A COMPARISON OF THE TAX-MOTIVATED INCOME SHIFTING OF MULTINATIONALS IN TERRITORIAL AND WORLDWIDE COUNTRIES

Kevin S Markle

Oxford University Centre for Business Taxation Said Business School, Park End Street, Oxford, Ox1 1HP

WP 12/06

A Comparison of the Tax-motivated Income Shifting of Multinationals in Territorial and Worldwide Countries

Kevin S. Markle Dartmouth College kevin.markle@tuck.dartmouth.edu

November, 2010

Abstract:

This paper tests for differences in the tax-motivated income shifting behaviors of multinationals subject to different systems of taxing foreign earnings. I find that multinationals subject to territorial tax regimes shift more income than those subject to worldwide tax regimes, but that the difference in shifting is not statistically different when the worldwide firms can defer repatriation of the shifted income. I also find that the difference in shifting is greater when the multinational is cash-constrained in its home country. In additional tests, I find that worldwide firms bear the dead-weight cost of having cash trapped in foreign subsidiaries while territorial firms do not.

Key words: income shifting, multinational, worldwide, territorial, exemption, credit, international tax

I thank my committee, Doug Shackelford (Chair), Graham Glenday, Mark Lang, Ed Maydew, and Jana Raedy for ongoing guidance and feedback on this paper. I also thank Scott Dyreng, Alex Edwards, Stacie Laplante, Christy MacDonald, Peter Merrill, Leslie Robinson, Terry Shevlin, Joel Slemrod, Jake Thornock, participants in the University of Washington Tax Reading Group, and workshop participants at the University of Waterloo, the Deloitte Tax Policy Research Symposium, the 2010 AAA annual meeting and a meeting of the International Tax Policy Forum for helpful comments on earlier drafts. I gratefully acknowledge financial support from the UNC Tax Center and the International Tax Policy Forum.

1.0 Introduction

It is well documented that firms shift income across jurisdictions when they have a tax incentive and the ability to do so.¹ What is not yet known is whether the home country of a multinational affects its propensity to shift income. Because countries tax the foreign earnings of their multinationals differently, the domicile of a multinational might affect its income shifting if the tax laws reduce the incentive to shift. This paper tests for differences in income shifting based on cross-country variation in the taxation of foreign subsidiaries.²

Most studies of the effects of home country taxation of foreign earnings divide countries into two categories: territorial and worldwide. Territorial countries are those that generally exempt foreign income from home country tax. Worldwide countries are those that tax foreign income at the home country rate and allow credits for the foreign tax paid on the income.³ However, most countries do not treat all types of foreign income uniformly and commonly have different rules for personal and corporate income and/or active and passive income. In fact, all countries that exempt the foreign income of their corporations fully tax the foreign income of their individuals, meaning these countries would be classified as territorial for corporate tax purposes but as worldwide for individual tax purposes. In this study, I consider only

¹ See Devereux and Maffini (2007) for a survey of this literature. More recent studies on the topic include Dischinger (2009), Dischinger and Riedel (2008), Klassen and Laplante (2009), and Dyreng and Lindsey (2009).

² There is no universally accepted definition of tax-motivated income shifting in the literature. In this study, I consider shifted income to be taxable income reported in a jurisdiction different from that in which it would be reported absent an action taken by management where a motive for the action taken is to reduce the overall tax burden of the multinational. Income can be shifted in many ways. The most common are through manipulation of the prices of intra-firm trades (transfer prices), location of debt, and location of intangibles. In this study, I do not address how the shifting is accomplished, but rather infer that income has been shifted based on deviation from an expected level of reported income.

³ The systems are sometimes referred to as exemption and credit systems, respectively.

multinational corporations and, as such, classify countries based on how they treat the foreign income of their corporations.⁴

Prior studies have shown that multinationals domiciled in territorial countries behave differently from those domiciled in worldwide countries in location of foreign direct investment (Hines, 1996, Clausing, 2009, Smart, 2010), headquarter relocations (Voget, 2008), and in subsidiary location choices (Barrios et al, 2010).⁵ However, to my knowledge, no one has tested whether companies from territorial and worldwide countries differ in their response to tax incentives and opportunities to shift income. This paper conducts such tests.

Understanding whether income shifting is more prevalent in territorial countries should be important to policymakers because the international landscape is changing; both Japan and the UK (representing approximately 9% and 5%, respectively, of global GDP) adopted territorial corporate tax systems in 2009, leaving the U.S. (28% of global GDP) as the sole member of the G8 taxing the worldwide active business income of its corporations.⁶ Both the UK and Japan cited the competitiveness of their multinationals in global markets as a first-order impetus for the change in policy, and competitiveness is a common theme when U.S. multinationals call for conformity with other countries as the debates over international tax reform continue (Samuels,

⁴ Even within the realm of corporate tax, the worldwide/territorial classification is not straightforward. It is most accurately made at the country-pair level since several countries treat the income earned in different countries differently. For example, Canada exempts the income earned in countries with which Canada has a bilateral treaty and taxes income earned in all non-treaty countries. Canada is most commonly classified as a territorial country since most of its trade is with treaty countries, but income earned by Canadian multinationals in approximately 35% of the countries of the world is subject to Canadian tax. Of the 32 (19) territorial (worldwide) parent countries in my sample, 15 (7) tax (exempt) foreign income earned in at least one foreign country. For ease of exposition, I continue to classify parent countries based on their predominant system in the text, but classifications are made at the country-pair level for the empirical tests in the paper.

⁵ It should be noted that several other studies (Slemrod, 1990, Benassy-Quere et al, 2000, Altshuler and Grubert, 2001, and Hajkova et al, 2006) find no difference in the sensitivities to tax of the investments of the two groups.

⁶ Because my study uses 2006 data, Japan and the UK are worldwide countries in this paper.

2009).⁷ Missing from those debates are empirical comparisons of the behaviors of multinationals subject to different international tax laws. This paper begins to fill that void.

The incentive for a multinational to shift income is assumed to be driven by the expected returns to the shifting. Consider two multinational firms, T and W, identical except that T is domiciled in a territorial country, W in a worldwide country. Each has a home country tax rate of τ_P and owns one foreign subsidiary with a 0% tax rate. Both T and W shift \$*S* of pretax income to their respective subsidiary, the subsidiary pays no tax and returns a \$*S* dividend to its parent. T's dividend is exempt from home country tax, so T realizes savings from the shifting of $$S * \tau_P$.⁸ W includes \$*S* in its taxable income, has home country tax payable of $$S * \tau_P$, which is equivalent to the tax W would have paid if the income was not shifted, and W realizes no return on income shifting.

On the surface, it appears obvious that territorial firms have a greater incentive to shift income. However, this highly stylized example does not include the effects of two important aspects of the worldwide system, deferral and cross-crediting, which can blur the distinctions from the territorial system (Altshuler, 2000, de Mooij and Ederveen, 2003). Deferral refers to the provision which delays the liability for home country tax on the foreign earnings until they are repatriated as a dividend. Cross-crediting allows W to reduce its tax payable on foreign earnings if its foreign subsidiary in a second foreign country has paid tax at a rate higher than W's. Extending the example, if W had a second subsidiary with tax rate τ_H (where $\tau_H > \tau_P$) that earned \$*I* in pretax income, that subsidiary would pay \$ $I * \tau_H$ of tax, which is \$ $I * (\tau_H - \tau_P)$

⁷ In a February, 2010 presentation, David Hartnett, Permanent Secretary for Tax, HM Revenue and Customs, said that three primary factors in the decision for the UK to switch to a territorial system were competitiveness, compliance burden, and anti-avoidance measures (Taxes, 2010).

⁸ This assumes that the tax bases of the two countries are the same (i.e., that \$1 of taxable income shifted out of the parent results in exactly \$1 of additional taxable income being reported by the subsidiary). In reality, differences in tax laws across countries mean that income shifting does not always result in 1:1 differences in taxable income being reported in the two countries. I am unable to capture such differences in the available data, so assume no differences in tax bases across countries.

more than would have been paid at W's tax rate. Cross-crediting allows W to reduce its $S * \tau_P$ liability on the income shifted to the zero-tax subsidiary by $I * (\tau_H - \tau_P)$, the amount of the excess credit for the tax paid in the high-tax country. If the excess credit is greater than or equal to $S * \tau_P$, W saves $S * \tau_P$ (the same amount as the territorial parent, T) by shifting.

It is important to note here that the financial reporting standards in worldwide countries do not require the home country tax that is deferred to be recorded on the income statement of the parent if the earnings are deemed to be indefinitely reinvested in the foreign country. In other words, under APB 23 in U.S. GAAP (IAS 12 in IFRS, FRS 19 in UK GAAP), the financial accounting treatment of foreign earnings whose repatriation to the parent are deferred indefinitely parallels the income tax treatment; the tax expense is not recorded until the dividend is paid and the cash tax payment is due. Concurrent research by Blouin, Krull and Robinson (2010) and Graham, Hanlon and Shevlin (2010) shows that this financial accounting treatment affects the repatriation decisions of U.S. multinationals. Both of these studies infer from their results that the financial accounting treatment of foreign earnings affects the incentives of U.S. multinationals and that this effect is incremental to the incentive effects related to cash taxes paid. In the context of my study, the financial reporting treatment of indefinitely reinvested foreign earnings will provide worldwide firms with incentive to shift income to lower-tax countries and defer repatriation as long as possible. To the extent that they are able to accomplish this, their financial statements will look the same as those of their territorial counterparts.

Of course, incentive is just one factor in determining whether firms shift income. Other factors include the constraints on the ability to shift (e.g., laws) and the costs (e.g., agency, political, efficiency) of shifting. As such, the observed income shifting of a multinational is

determined by the interplay of its incentives, costs and constraints. Whether there are systematic differences in income shifting across groups of multinationals subject to different international tax laws is the empirical question asked in this paper.

Using a framework developed by Hines and Rice (1994) and a tax variable which captures the incentive and opportunity to shift income among all countries in which the multinational operates (Huizinga and Laeven, 2008), I directly compare the income shifting of worldwide and territorial multinationals. To conduct my empirical tests, I use a comprehensive database containing both financial statement data and ownership data for multinationals domiciled in 51 countries. I also obtain proprietary pair-specific information about the bilateral tax relationships between countries (e.g., type of foreign tax credit granted by the parent country, withholding tax rate on dividends paid from subsidiary country to parent country) that allows me to construct a comprehensive tax rate as well as test for the separate effects of individual components of the overall rate.

Four main findings emerge from the study. First, multinationals in both groups engage in tax-motivated income shifting and territorial firms, on average, shift more income than worldwide firms. Second, the income shifting of worldwide firms is increasing in their ability to invest the funds abroad while that of territorial firms is not. Stated another way, worldwide firms that can reinvest the shifted funds abroad shift as much income among their affiliates as do their territorial counterparts. Third, all multinationals (i.e., both territorial and worldwide) have cash trapped in countries with higher withholding tax rates on dividends, with no difference in degree between the two groups. Finally, worldwide firms have cash trapped in their low-tax subsidiaries by the residual home country tax that is due upon repatriation of a dividend.

The primary contribution of my paper is that it provides direct evidence of an association between income shifting and the taxation of foreign income in the parent's country. To my knowledge, this is the first study to identify and test a specific determinant of income shifting behavior; while prior studies have shown that income is shifted in different settings and by different means, no study has documented specific factors that affect the degree of tax-motivated income shifting. My findings contribute needed empirical data to the ongoing debate about international tax policy, the relevance of which is underscored by the recent changes made by Japan and the UK and the increasing isolation of the U.S. in the international tax realm.

My paper also contributes to the stream of literature examining the dead-weight costs associated with international tax rules. Extant research has shown that U.S. multinationals bear such costs and assumed that they impair the competitiveness of U.S. firms in markets where they compete with multinationals subject to territorial tax regimes. My results provide direct evidence of one such competitive disadvantage, the trapping of cash in foreign subsidiaries, by documenting an association between excess cash held in a foreign affiliate and the specific components (withholding tax in the host country and income tax in the home country) of the overall tax rate triggered by the repatriation of dividends.

Finally, my paper contributes more generally to a growing literature in international tax and financial accounting by including countries from many different regions in the same sample. Much of the existing literature that is grouped under the banner "international" uses samples consisting either of parents domiciled in one country only (predominantly the U.S.) and their foreign affiliates or of European parents and their European subsidiaries. My study is among the first to use more comprehensive data that allow some of the caveats on generalizability of results to begin to be relaxed.

7

The paper is organized as follows: Section 2 reviews the principles of the tax systems and the relevant prior literature, and develops hypotheses. Section 3 describes the research design. Section 4 describes the data. Section 5 presents the empirical findings. Concluding remarks follow.

2. Background and Hypotheses

2.1 Systems of taxing earnings of foreign subsidiaries

The taxation of the income of a foreign subsidiary of a multinational can be thought of as consisting of three parts: 1. corporate income tax paid to national and sub-national authorities in the subsidiary's country (the host country); 2. withholding taxes paid in the host country when dividends are paid to the parent out of the after-tax earnings of the subsidiary; 3. corporate income tax paid to national and sub-national authorities in the parent's country (home country). In contrast, the taxation of domestic income consists only of the corporate income tax paid to national authorities in the home country.

The reason that foreign earnings are taxed differently from domestic earnings is that all countries adhere to two general principles. First, that the country in which the income is earned has the right to tax it. Second, that each dollar of income should be taxed only once. The territorial system avoids double-taxation by exempting foreign income from home country tax. The worldwide system avoids double-taxation by granting credits for foreign taxes paid which reduce the home country tax liability. Despite the fact that each country has sovereignty over its tax laws, in choosing how to tax the foreign earnings of their multinationals and mitigate double taxation, the vast majority of countries choose one of two systems: territorial and worldwide.⁹

⁹ To my knowledge, prior research has not explored the reasons that countries have clustered on this dimension while maintaining differences along other dimensions.

Because this is so, an empirical investigation of how the taxation of foreign income affects behavior is appropriately made by sorting observations into two groups.

In order to understand how the differences between the groups may affect income shifting behavior, it is necessary to understand the principles and mechanics of each system. A territorial parent receives dividends paid out of the after-tax earnings of its foreign subsidiary and pays no domestic tax on those earnings.¹⁰ The worldwide system is more complicated because it does not treat the income of each foreign subsidiary in isolation. The underlying premise of the worldwide system is that the multinational as a whole (i.e., parent and foreign subsidiary) should pay the same amount of tax (the sum of foreign and domestic) that would be paid if the income were earned domestically, regardless of where the income is earned. Consider the case of a parent owning two foreign subsidiaries, H and L, where H's tax rate is higher than the parent's and L's is lower than the parent's. When H pays a dividend to the parent, the parent does not pay any domestic tax since the amount of tax on the income already exceeds the amount of tax that would have been paid had the income been earned in the parent country. When L pays a dividend to the parent, the parent includes the income (not the dividend) in its home country taxable income. The parent then receives a foreign tax credit which reduces its tax payable by the amount of the foreign tax that was paid. At this point, the total amount of tax paid on the aggregate foreign income is higher than what would have been paid if the income all had been earned in the parent country (L's was taxed at the parent's rate, but H's was taxed at a rate higher

¹⁰ There is a subdivision within the territorial group, with some countries taxing 5% of foreign dividends upon repatriation and some fully exempting all foreign dividends. The countries that choose to tax 5% of the dividends (Belgium, France, Germany, Italy, Netherlands Antilles, and Switzerland) do so as a means to offset any expenses related to the foreign subsidiaries that are incurred and deducted from taxable income in the parent country. Most countries that fully exempt the dividends collect no tax related to the foreign earnings and thus forego any offset of lost revenues, but a small number (e.g., Australia, Hong Kong, and Singapore) impose limits on the deductibility of expenses based on the scale of foreign investment. In countries that tax 5% of foreign dividends, a parent receives dividends paid out of the after-tax earnings of its foreign subsidiaries, includes the non-exempt portion of the dividend in its taxable income, and does not receive a domestic credit for the foreign income tax paid. For ease of exposition, I consider only the two extremes (fully exempt (territorial) and fully taxable (worldwide)) in this discussion.

than the parent's). Cross-crediting allows the parent to reduce the amount of home country tax payable on the earnings of L by the amount by which the tax paid in H's country exceeds that which would have been paid if the income had been earned in the parent country.^{11,12} In a case in which the excess credit for tax paid by H fully offsets home country tax payable on the earnings of L, the taxation of L is identical to what it would be under a territorial system.

The income of a foreign subsidiary of a worldwide parent is not included in the taxable income of the parent until the dividend is paid by the subsidiary to the parent.¹³ This principle, commonly referred to as deferral, may introduce time value of money savings to the shifting. In the extreme case in which the worldwide parent never repatriates the dividend from the foreign subsidiary, the taxation of the earnings of the low-tax subsidiary of the worldwide parent looks identical to that of the territorial parent.

2.2 The effect of international tax systems on income shifting

Because cross-crediting and deferral can reduce the tax paid by a worldwide multinational on foreign income, it is not a given that the returns to shifting of a territorial parent are greater than those of a similar worldwide parent. In a recent survey of experienced partners and managers in the transfer pricing groups of two Big 4 accounting firms, Mescall (2010) asked two questions related to my research question.¹⁴ First, he asked if the tax system (worldwide vs.

¹¹ Cross-crediting is limited to the amount of domestic tax paid on the earnings of L and any excess credits can be carried forward.

¹² The system of cross-crediting described here is that of the U.S. There are further restrictions on cross-crediting whereby credits can only be used to offset tax paid on income in a similar "basket". As of December, 2006 the U.S. system reduced from nine baskets based on industry to two baskets, passive and general. In the UK, a system referred to as "Onshore Pooling" has been in place since March, 2001 and functions like the U.S. system. Japan's system is similar to that of the U.S. Of the countries in the worldwide group in this study, only Poland limits foreign tax credits on a per-country basis.

¹³ This is generally true only for active business income of the subsidiary (see Scholes, et al (2009) for a more detailed discussion). All worldwide countries tax passive income of foreign subsidiaries as it is earned. Ideally, I would be comparing the shifting of active income. Unfortunately, I am not able to separate active and passive income in my data.

¹⁴ The survey respondents are located in 32 different countries. For more specific information about the survey and the respondents, see Mescall (2010). I am grateful to Devan Mescall for sharing these data with me.

territorial) in which a multinational is based affects its transfer pricing incentives.¹⁵ 62% responded "yes", 18% responded "no", and 20% responded "unsure". Second, he asked if the practitioner would expect a multinational based in a worldwide tax system to be less aggressive than, more aggressive than, or equally aggressive as a firm based in a territorial system.¹⁶ 30% answered "less", 31% answered "more", and 39% answered "equally". At first glance, the two results appear contradictory and suggest that firms do not respond to incentives in expected ways. However, I infer from the results that, although the incentives of the territorial group are greater than those of the worldwide group, constraints on the ability to respond to those incentives render predictions of behavior ambiguous. I also interpret the results of the second question as saying that a worldwide system, in and of itself, is not an effective disciplining mechanism for the transfer pricing practices of its multinationals.

Consistent with this interpretation, prior studies comparing the behaviors of worldwide and territorial firms have found mixed results. I consider these studies in a framework suggested by Devereux and Maffini (2007) which characterizes the choices of firms wanting to access foreign markets as a four-step decision process: 1. A choice between producing at home and exporting and producing abroad; 2. A choice of where to locate production; 3. A choice of the scale of investment; and 4. A choice of the location of profit. Several previous studies have compared the tax sensitivities of territorial and worldwide firms in the second and third steps. Slemrod (1990), Benassy-Quere et al (2000), Altshuler and Grubert (2001), and Hajkova et al (2006) find no difference in the location decisions of worldwide and territorial firms while Hines

¹⁵ The actual question asked was: "Does the tax system (worldwide versus territorial) in which a multinational is based affect its transfer pricing incentives?"

¹⁶ Actual question: Would you expect a multinational firm based in a worldwide tax system to be: A. Less aggressive in their transfer pricing than a firm based in a territorial system; B. More aggressive in their transfer pricing than a firm based in a territorial system; C. No different in their transfer pricing strategies than a firm based in a territorial system".

(1996), Wijeweera et al (2007), Barrios et al (2009), Clausing (2009), and Smart (2010) find that territorial firms are more sensitive to tax in their investment location decisions.¹⁷

In the fourth step (location of profit), many studies have shown that tax considerations have significant influence (Harris et al., 1993, Collins et al., 1998, Klassen et al., 1993, among many others). To my knowledge, however, no previous study has compared the profit location decisions of worldwide and territorial firms and it remains an open question whether they differ in their tax-motivated income shifting.

2.3 Hypotheses

If all else is held constant, a territorial firm will save at least as much cash tax as a worldwide firm by shifting taxable income to a jurisdiction in which it will face a lower tax rate. The deferral provision can result in a convergence of the savings of the two groups when the worldwide firm is able to delay dividend repatriation indefinitely. Cross-crediting can result in a convergence of the savings when the worldwide firm has excess credits because its income earned in low-tax jurisdictions will, in substance, be exempt from home-country tax due to the application of the excess credit. However, since these conditions for convergence are not always present, I predict that territorial firms, on average, shift more income than worldwide firms. This leads to the first hypothesis, stated in the alternative:

H1: A multinational subject to a territorial tax regime shifts more income among its affiliates for tax reasons than does a similar multinational subject to a worldwide tax regime.

¹⁷ Other recent studies have made comparisons of worldwide and territorial firms in the context of organizational structure decisions. Voget (2008) finds that worldwide multinationals are more likely to relocate their headquarters in response to tax rate incentives than are territorial multinationals, while Huizinga and Voget (2009) find the parent firm is more likely to be located in the territorial country following the merger of a territorial firm and a worldwide firm.

The deferral provision within the worldwide system delays the cash tax liability due on the active foreign earnings until they are repatriated to the parent as a dividend. To the extent that a worldwide multinational is able to reinvest shifted income in the foreign jurisdiction and delay repatriation indefinitely, it moves closer economically to its territorial counterpart. In supporting his opinion that transfer pricing pressures would not increase if the U.S. adopted a territorial system, John M. Samuels said that under the current (worldwide with deferral) system "...a [U.S.] company can always repatriate all or any portion of its foreign earnings at any time it chooses, with the only cost of the repatriation being the same U.S. tax that it would have had to pay had if it had not shifted the income outside of the U.S. in the first place... Simply put, it is economically rational for a company to always shift as much income offshore as possible because it gets the benefit of the time value of money and sometimes the accounting benefit." (Taxes, 2010)¹⁸ The accounting benefit refers to the fact that the financial accounting treatment of the home country tax on indefinitely reinvested foreign earnings parallels the tax treatment, meaning that no tax expense is recorded on the parent's financial statements until a dividend is repatriated. The implication that the financial accounting treatment provides an incentive separate from the cash tax treatment is consistent with the findings of Blouin et al (2010) and Graham et al. (2010) mentioned previously.

Mr. Samuels' argument assumes that cash constraints do not compel the company to undertake repatriations and that the funds can be put to productive use in the foreign country. If either of these conditions is not met and the shifted income will have to be returned to the parent

¹⁸ John M. Samuels is Vice President and Senior Counsel, Tax Policy and Planning of General Electric Corporation. He made these remarks at the Tax Council Policy Institute's 11th Annual Tax Policy & Practice Symposium in February, 2010 (Taxes, 2010). I thank Mr. Samuels for sharing his notes with me and for subsequent discussions.

country in the near future, the incentives for a worldwide firm to shift are reduced. Based on this reasoning, I state my second hypothesis:¹⁹

H2: The difference in the tax-motivated income shifting of territorial and worldwide firms is decreasing in the ability of the parent to defer repatriation of dividends from foreign subsidiaries.

Finally, all firms face a cost to repatriating dividends out of foreign earnings in the form of host country withholding tax on the dividend. Worldwide firms face the additional cost of home country tax on the underlying income (net of foreign tax credits). If a firm alters its repatriation decisions to defer these costs, it could end up having its cash trapped in jurisdictions with suboptimal rates of return. Anecdotal evidence suggests that this theoretical difference plays out in real decisions. Current estimates of the aggregate indefinitely reinvested foreign earnings of U.S. multinationals are over \$1 trillion, an increase of 70% since 2006 (Drucker, 2010). In Japan, one of the main reasons for adopting a territorial system was to boost its domestic economy by encouraging repatriation (Taxes, 2010).²⁰ In the UK, there is an expectation that the shift to a territorial regime will result in cash being repatriated.²¹

Extant research provides empirical evidence that repatriation taxes affect the cash allocation decisions of U.S. multinationals. Foley et al. (2007) show that, in a sample of U.S. (i.e., worldwide) multinationals, firms hold more cash in foreign subsidiaries dividends from which would face higher repatriation taxes, and both Blouin et al. (2010) and Graham et al.

¹⁹ Ideally, I would test a similar hypothesis about the effect of being in an excess credit position on the income shifting of worldwide firms. Unfortunately, the data available to me do not allow me to calculate a reliable proxy for the foreign tax credit position of a firm and I am unable to conduct such tests. Grubert and Mutti (2001) use confidential tax return data of U.S. multinationals to compare the shifting of excess credit firms to excess limit firms within a worldwide country and find no difference in the shifting of the two groups.

²⁰ Consistent with this expectation, on May 18, 2010, the Nikkei English News reported that Japanese multinationals repatriated a record 3.14 trillion yen from foreign subsidiaries in 2009 (an increase of nearly 20% over the previous year) and attributed the increase to the change to a territorial system.

²¹ David Hartnett, Permanent Secretary for Tax, HM Revenue and Customs, said at a February, 2010 symposium that, following the change to an exempt system, the UK is "just waiting to see how large the wall of cash to come in is" (Taxes, 2010).

(2010) find that dividend repatriation decisions of U.S. multinationals are affected by the tax

cost. Consistent with this, my final two hypotheses are:

- H3a: The level of cash held in a foreign country is increasing in the withholding tax rate on dividends paid to the parent for both territorial and worldwide firms.
- H3b: The level of cash held in a foreign country is increasing in the home country tax rate on dividends paid out of the foreign country.

3.0 Research design

3.1 Tests of Hypotheses 1 and 2

To test Hypotheses 1 and 2, I estimate various modifications of the following regression

equation:

(1)
$$LogPLBT_i = \beta_0 + \beta_1 TT_i + \beta_2 C_i + \beta_3 TT_i * C_i + \beta_4 LogASSETS_i + \beta_5 LogCOMP_i$$

+ $\beta_6 LogVA_i + \beta_7 STABILITY_i + \beta_8 LAW_i + \varepsilon_i$

where

- $LogPLBT_i$ is the natural logarithm of earnings before tax reported on the unconsolidated financial statements of subsidiary *i*.
- TT_i is an indicator variable equal to 1 if dividends paid by subsidiary *i* to its parent are either fully- or 95%-exempt from tax in the parent country; 0 otherwise.
- C_i is the measure of family-level tax incentive and opportunity derived by Huizinga and Laeven (2008) calculated as follows (see Appendix A for sample calculations):

$$C_{i} = \frac{1}{(1-\tau_{i})} \frac{\sum_{k\neq i}^{n} \frac{B_{k}}{1-\tau_{k}}(\tau_{i}-\tau_{k})}{\sum_{k=1}^{n} \frac{B_{k}}{1-\tau_{k}}}$$

where

- τ_i is the total tax rate (incorporating income and withholding taxes) of subsidiary *i*.
- τ_k is the total tax rate (incorporating income and withholding taxes) of subsidiary k, where k runs from 1 to n, where n is the number of subsidiaries controlled by the parent.

- B_k is the true profits of subsidiary k. Revenue is used as a proxy.²²
- $LogASSETS_i$ is the natural logarithm of tangible fixed assets reported on the unconsolidated financial statements of subsidiary *i*.
- $LogCOMP_i$ is the natural logarithm of compensation expense reported on the unconsolidated financial statements of subsidiary *i*.
- $LogVA_i$ is the natural logarithm of country-industry-specific value added (in millions of U.S. dollars) of the 2-digit NACE industry code of *i*. Where multiple industries are being aggregated, a weighted average is taken with operating revenue providing the weights.
- $STABILITY_i$ is an index running from -2.5 to 2.5 from the Worldwide Governance Indicators (Kaufmann, et al., 2008). The variable is designed to capture "perceptions of the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means, including domestic violence and terrorism."
- LAW_i is an index running from -2.5 to 2.5 from the Worldwide Governance Indicators (Kaufmann, et al., 2008). The variable is designed to capture "the extent to which agents have confidence in and abide by the rules of society, and in particular the quality of contract enforcement, the police, and the courts, as well as the likelihood of crime and violence."

Equation 1 is based on the empirical model developed by Hines and Rice (1994), which begins with the premise that the profit reported by an entity is the sum of the true profit generated and any profit resulting from income shifting.²³ Because true profit is unobservable, it must be estimated. To derive their empirical model, Hines and Rice (1994) assume a Cobb-Douglas production function and arrive at an estimation model that expresses reported income as a function of labor and capital inputs, a general productivity component, and a measure of tax incentive. Consistent with prior studies, I use *LogCOMP* and *LogASSETS* as the proxies for

²² A more appropriate proxy for true income would be total assets since operating revenue can be shifted. Because operating revenue is available for more subsidiaries, I use it in my reported results and use total assets in sensitivity tests. Inferences are unchanged when total assets is used as the proxy for true income.

²³ To address potential concerns related to scale in Equation 1, I run all main tests using alternative specifications in which I scale all financial statement variables by total assets and by total revenue (i.e., I replace *LogPLBT*, *LogCOMP*, and *LogASSETS* with *PLBT/SCALAR*, *COMP/SCALAR*, and *ASSETS/SCALAR*, respectively). Inferences are unchanged when these specifications are used.

labor input and capital input, respectively. As the proxy for general productivity, I use *LogVA* (which is at the country-industry level) rather than the natural logarithm of either the gross domestic product (GDP) or the per capita GDP of the subsidiary country used in prior literature because it captures intra-country differences that are aggregated away by the GDP measures.²⁴

I add two additional variables to the model used by Huizinga and Laeven (2008), *STABILITY* and *LAW*. These variables are intended to capture subsidiary-country-level factors that could influence the amount of income a multinational reports in a country. For example, if a firm has the tax incentive and opportunity to shift income into a country, but that country's instability puts the transferred income at risk, the expected return to shifting will be less than it would be in a more stable country.

3.2 Tax variable

The unit of observation in my empirical tests is an aggregation of all corporations in a country that are ultimately controlled by a common global ultimate owner. Equation 1, then, says that the level of pretax income reported in a country is a function of the capital, labor and productivity inputs, the stability and security of the country, and the tax incentive to shift income into or out of the country. As the tax incentive to shift income, I use the measure developed by Huizinga and Laeven (2008), *C*, which captures the incentive to shift income among all countries in which the global ultimate owner operates, subject to constraints on the shifting.²⁵ In principle, *C* is a weighted average of the tax rate differences from all other entities in the corporate family. It is derived theoretically under three assumptions: that global after-tax profit of the multinational is maximized, that the cost of shifting into or out of a country is increasing in the

²⁴ Inferences remain the same when log(GDP) and log(per capita GDP) are used as the productivity proxy.

²⁵ Most studies prior to Huizinga and Laeven (2008) used a rate difference between the parent and subsidiary country as the proxy for incentive to shift income, thus ignoring both the opportunities to shift among subsidiary countries and the constraints on shifting.

ratio of the shifted profit to true profit in the country, and that shifting costs are tax-deductible. It is the second assumption that results in true income (*B*) entering the weight and the third assumption that results in $(1 - \tau_k)$ entering the weight.

In choosing the appropriate tax rate to be used as the input to *C*, there are multiple options. As discussed in Section 2.1, there are three components of the total tax on the income of a foreign subsidiary: host country income tax, host country withholding tax, and home country income tax. Host country income tax is paid on all income of the subsidiary as it is earned. Withholding tax is paid when a dividend is paid to the foreign parent. Home country tax, if any, is paid when a dividend is received and is potentially avoided if the parent has excess foreign tax credits available. On the assumption that income shifted for tax purposes will be repatriated as a dividend, I use as the tax rate input into *C* a rate which is a combination of the two rates which are unavoidable and common to territorial and worldwide firms, the host country income and withholding taxes.²⁶ By excluding the residual home country tax from the calculation of *C*, I am holding the main difference between the two systems out so that differences in the association between shifting and *C* can be identified using the indicator variable (*TT*). The rate used, then, is $\tau_s + w_s(1 - \tau_s)$, where τ_s is the statutory corporate income tax rate and w_s is the withholding tax rate.²⁷

Appendix A presents examples of how *C* is calculated and how it varies with its inputs and from simple rate differences. To convey its basic concepts, I provide a simple example here. Consider two multinationals, M1 and M2, both domiciled in Country X (tax rate 40%) with

 $^{^{26}}$ I am aware of no other study that has used this composite tax rate in this context. Barrios et al. (2010), use it in their study of foreign subsidiary location choices. Huizinga and Laeven (2008) use the host country rate. Inferences from my main tests are unchanged when I use the host country rate as the input to C.

²⁷ For example, subsidiary earns \$100, $\tau_s = 30\%$ and $w_s = 10\%$. Subsidiary pays \$30 of tax to host country and distributes \$70 to parent as dividend, but \$7 is paid as withholding tax. Total tax paid to host country is \$37, so tax rate that would enter calculation of *C* is 37%.

subsidiaries in Country Y (tax rate 20%) and Country Z (10%).²⁸ Next, assume that both M1 and M2 have exactly \$100 of global true income, and that M1's is allocated 70/20/10 among X/Y/Z while M2's is allocated 10/20/70. C_X is equal to 0.09 for M1, while C_X is equal to 0.40 for M2.²⁹ Both have a positive sign, which reflects an incentive to shift income out of X, but the magnitude of M2's is more than four times that of M1. M1's C_X has a smaller magnitude because the portion of its true income that is in X is so large; while M1 has just as strong a rate incentive to shift income out of X, the income has to go somewhere and the costs of shifting it into Y and Z limit its shifting.

Looking at the low-tax countries, M1's C_Z is equal to -0.27 and M2's is equal to -0.07. In this case, the difference in magnitude can be thought of as being driven by the availability of income to be shifted into Z; M1 has a higher magnitude because its total costs (in all three countries) to shift a dollar into Z are less than those of M2. This simple example reinforces the theoretical foundations of C: it reflects the specific opportunity set of the multinational and its value is driven by both rate differences and differences in the allocation of true income.³⁰

3.3 Test of Hypotheses 3a and 3b

To test for differences in the relation between tax costs and cash held in foreign countries across the two groups, I estimate the following equation, adapted from that of Foley et al. (2007):³¹

²⁸ With no constraints on shifting, M1 and M2 would both shift all income out of X and Y into Z. However, laws and enforcement mechanisms as well as costs related to the shifting itself will constrain the shifting. $\frac{29}{(1-0.4)} \frac{1}{\frac{20}{1-0.2}(0.4-0.2) + \frac{10}{1-0.1}(0.4-0.1)}{\frac{70}{1-0.4} + \frac{20}{1-0.2} + \frac{10}{1-0.1}} = 0.09 ; \frac{1}{(1-0.4)} \frac{\frac{20}{1-0.2}(0.4-0.2) + \frac{70}{1-0.4}(0.4-0.1)}{\frac{10}{1-0.4} + \frac{20}{1-0.2} + \frac{70}{1-0.1}} = 0.40$ ³⁰ For completeness, M1's C_Y is equal to -0.18 and M2's is equal to 0.05. This demonstrates that, holding rate incentive constant,

changes in the allocation of true income can switch a subsidiary from positive (expected to shift out) to negative (expected to

receive shifted income). ³¹ Foley et al. (2007) include the ratio of research and development expense to total assets as an independent variable. As R&D is not available in my data, I use intangible fixed assets as a proxy. Also, they use a country tax rate as their proxy for tax cost of

$$LogCASH_{i} = \beta_{0} + \beta_{1}TT_{i} + \beta_{2}RATE_{i} + \beta_{3}TT_{i} * RATE_{i}$$
$$+\beta_{4}LogNI_{i} + \beta_{5}LogASSETS_{i} + \beta_{6}StdevNI_{i} + \beta_{7}CAPEX_{i}$$
$$+\beta_{7}LEV_{i} + \beta_{8}RD_{i} + \beta_{9}DOM_{R}D_{i} + \varepsilon_{i}$$
(2)

where

LogCASH _i	is the natural logarithm of (cash/total assets) reported on the unconsolidated financial statements of subsidiary <i>i</i> .
TT _i	is an indicator variable equal to 1 if dividends paid by subsidiary <i>i</i> to its parent are either fully- or 95%-exempt from tax in the parent country; 0 otherwise.
RATE _i	is the withholding tax rate on dividends paid by subsidiary i for H3a, and the residual home country tax rate for i 's parent on the income of subsidiary i for H3b.
LogNI _i	is the natural logarithm of (net income/total assets) reported on the unconsolidated financial statements of subsidiary <i>i</i> .
LogASSETS _i	is the natural logarithm of total assets reported on the unconsolidated financial statements of subsidiary <i>i</i> .
StdevNI _i	is the standard deviation of (net income/total assets) reported on the unconsolidated financial statements of subsidiary i in years 2001 – 2006.
CAPEX _i	is (capital expenditures/total assets) reported on the unconsolidated financial statements of subsidiary <i>i</i> .
LEV _i	is ((current liabilities + long-term debt)/total assets) reported on the unconsolidated financial statements of subsidiary i .
RD _i	is (intangible fixed assets/total assets) reported on the unconsolidated financial statements of subsidiary <i>i</i> .
DOM_RD _i	is (intangible fixed assets/total assets) reported by the ultimate owner of subsidiary <i>i</i> in its home country.

4.0 Data

4.1 Financial statement and ownership data

Financial statement and ownership data are taken from the Orbis database maintained by

Bureau van Dijk. The ownership data are static as of the most recent report date. Because the

repatriation because all of the parents in their sample were domiciled in the U.S. and faced the same statutory tax rate. Because my parents are in different countries, I use the difference in rates. Lastly, Orbis does not have data on capital expenditures. I estimate it as (ending tangible fixed assets – beginning tangible fixed assets + depreciation).

tax rate and tax law data used in the study are current as of January 1, 2007, I use 2006 as the sample year on the assumption that it is the year with the fewest mismatches of the various data sources.³²

Global Ultimate Owners

Orbis identifies a firm as a Global Ultimate Owner (GUO) if it controls at least one subsidiary and is itself not controlled by any other single entity. I begin creating my sample with a list of all GUOs in the database. I then create a list of subsidiaries that are identified as being ultimately controlled by each GUO in the sample.³³ For each subsidiary, I obtain its country of domicile and all needed financial statement variables.³⁴

Aggregation

Organizational structure can vary widely among multinationals. For example, one firm may choose to operate through one subsidiary in each country while an otherwise similar firm may choose to use multiple subsidiaries in each country. Or one firm may choose to own all of its subsidiaries directly while a similar firm may have more complex ownership structures. To enable comparisons across all possible structures, I aggregate all subsidiaries controlled by the same GUO at the country level.³⁵ For ease of exposition, I continue to refer to these aggregated groups as subsidiaries throughout the remainder of the paper. The corporate group to be studied,

 $^{^{32}}$ January 1, 2007 is the most recent date at which the proprietary information on the bilateral relationships between countries obtained for the study were available to me.

 ³³ A subsidiary is considered ultimately controlled by the GUO if all links in the ownership chain between it and the GUO have ownership percentages greater than 50%. As such, subsidiaries of all levels are included in the sample. For example, if GUO A owns 100% of B and B owns 75% of C which owns 25% of D, B and C would be counted as ultimately owned by A while D would not.
 ³⁴ In Orbis, the country of domicile is based on the primary trading address of the firm. The country of incorporation is also

³⁴ In Orbis, the country of domicile is based on the primary trading address of the firm. The country of incorporation is also available in the data. In my sample, there are no observations for which the country of primary trading address and country of incorporation are different.

³⁵ A subsidiary is included if it has unconsolidated data for all variables in Equation 1 for 2006 and it is not in a service, financial, or insurance industry. These industries are excluded on the assumption that the empirical model of true income is not well specified for them. When these industries are included in the sample, inferences remain largely unchanged.

then, consists of a GUO and the portfolio of countries in which it has controlled subsidiaries and income shifting is presumed to be possible among all members of the group.³⁶

All financial statement variables are summed by country since they are drawn from unconsolidated statements. The proxy for productivity I use is the country-industry-specific value added for 2006.³⁷ To calculate an aggregate value for all entities within a given country, I take the weighted average of the value added of each entity's industry, with the weights provided by the operating revenues of the entities.

Common-parent subsidiaries

Subsidiaries that do not have all data items required to be in the sample contribute to the calculation of the tax incentive variable (*C*) if they report operating revenue for 2006. There are 5,611 parents in 51 countries that have at least one subsidiary in the sample. For these parents, the number of common-parent (sample) subsidiaries is 28,513 (15,546).³⁸ The number of common-parent (sample) subsidiary countries is 67 (31).

4.1.1 Example of data

I provide the following example to illustrate how the data in Orbis end up contributing to the calculation of the variables. Parco, a global ultimate owner, is domiciled in France. It has 11 subsidiaries distributed across four countries as follows: five in France, three in The Netherlands, two in the U.S., and one in Bermuda. The unconsolidated financial statements of Parco are also available, meaning there are 12 entities in total. Ideally, all 12 of them are included in Orbis, are

³⁶ In additional untabulated tests, I use the total ownership percentage that the GUO has in the subsidiary rather than relying on the links within Orbis and include only subsidiaries with various minimum ownership percentages. The percentages tested are 100%, 90%, 70% and 60%. Inferences from these tests are not different from those reported.

³⁷ This variable is obtained from the OECD STAN database. The specific variable I use is VALU, the value added at current prices.

³⁸ As noted previously, the term "subsidiary" here represents the aggregation of all corporations within a country.

identified as ultimately controlled by Parco, and have the financial statement variables needed to be included as sample firms. If this is the case, then the six (parent plus five subsidiaries) companies in France are aggregated into $Parco_{France}$, the three in The Netherlands are aggregated into $Parco_{Netherlands}$, and the two in the U.S. into $Parco_{US}$. The subsidiary in Bermuda is $Parco_{Bermuda}$. Each of these aggregated "subsidiaries" is then an observation in the dataset, meaning Parco contributes four observations to the sample.

For the calculation of *C* for a given observation, the other three subsidiaries serve as common-parent subsidiaries for the subsidiary whose *C* is being calculated. For example, $C_{ParcoNetherlands}$ would be calculated with the true incomes and tax rates of Parco_{France}, Parco_{US}, and Parco_{Bermuda} in the numerator.

There are three grades of limitations to the data. First, Orbis could fail to link the corporation as ultimately owned by its GUO and the corporation would not be included in the study. Second, the corporation could have no financial statement data (i.e., all that is known about the corporation is that it exists and that the GUO ultimately controls it). These corporations do not contribute either to the sample or to the calculation of *C*, but they contribute to calculations of the completeness of the data. Third, the corporation could have data for operating revenue, but not for all of the regression variables (i.e., pretax income, tangible fixed assets and employment costs). These corporations contribute to the calculation of *C* for the other subsidiaries controlled by the same GUO, but are not included as sample observations.

4.2 Classification of subsidiaries

To determine the effect of foreign dividend taxation on income shifting, I would ideally use a continuous variable equal to the percentage of dividends that are taxed. However, as noted

previously, countries have clustered into two groups (territorial and worldwide), denying me the opportunity to use a continuous experimental variable.³⁹ A subsidiary is classified as territorial if its dividends would be either fully- or 95%-exempt from home country tax if paid directly to its Global Ultimate Owner. A subsidiary is classified as worldwide if its income is fully taxable in the country of the GUO.⁴⁰ To classify country pairs more precisely, I obtain detailed proprietary information on each country pair from Comtax.⁴¹ Comtax synthesizes the information in countries' tax codes as well as the bilateral tax treaties that exist between countries to determine what percentage of foreign dividends are taxed when paid from the subsidiary country to the parent country. This information enables me to classify each subsidiary as worldwide or territorial rather than assuming that all subsidiaries of parents in the same country fall in the same category. This is potentially important because countries do not treat income from all foreign countries the same. For example, Belgium exempts 95% of dividends from all countries except Poland (dividends from which are fully exempt), British Virgin Islands, Gibraltar, Iran, Isle of Man, Jersey, Liechtenstein, Monaco, Oman and Panama (dividends from which are fully taxable).

4.3 Sample

³⁹ The only countries of which I am aware that do not either fully exempt, exempt 95%, or fully tax foreign income are Belarus (which taxes 62.5% of dividends from all countries), Czech Republic (which taxes 62.5% of dividends from most non-European countries and exempts dividends from most European countries), Israel (which taxes 81% of dividends from all countries except Singapore and The Netherlands, dividends from which are exempt), and Pakistan (which taxes 54% of dividends from all countries). There are 35 usable observations for Israel in my data. However, they are excluded from the analyses. When those 35 observations are included in the worldwide group, results are unchanged. The Czech Republic is included in the sample as a territorial country because all sample subsidiaries with it as the parent country are in Europe.

⁴⁰ Under this classification system, a subsidiary in Malaysia that is controlled by a firm in the Netherlands (a territorial country) which is itself controlled by a U.S. (worldwide) GUO would be classified as worldwide even though its dividends, when paid directly to its immediate parent in the Netherlands, would be exempt from tax. This assumption is necessary because corporate structures can vary widely across multinationals. In the sample, 90.1% of the subsidiaries that get aggregated together are controlled directly (i.e., with no third country between the GUO country and the subsidiary country). When tests are run using only these subsidiaries, inferences are unchanged.

⁴¹ Comtax is an international tax planning company based in Sweden that produces software intended to help companies structure transactions tax efficiently.

Table 1 summarizes how each country contributes to the parents, sample subsidiaries, and common-parent subsidiaries in the sample. The statutory tax rate (which includes sub-national income tax for a representative firm in the country – for example, the U.S. rate of 40% is comprised of the 35% federal rate and the 5% rate of a firm in New York State) as of January 1, 2007 is reported in the first column.⁴² The mean withholding tax rate on dividends paid out of the country is reported in the second column. This is a simple average of the rates applied to dividends paid to the other countries in the database. The third column reports the mean withholding tax rate on dividends coming in to the given country. The other three columns report the number of parents, sample subsidiaries, and common-parent subsidiaries domiciled in each country.⁴³

Summary statistics for the sample are reported in Table 2. Panel A reports the number of observations, mean, median, maximum, minimum and standard deviation for the regression variables for the full sample divided into two subsamples: territorial and worldwide. Panel B reports the means by country of domicile of the subsidiary. Panel C reports the means by country of domicile of the subsidiary. Panel C reports the means by country of domicile of the subsidiary. Panel C reports the means by country of domicile of the parent. Panel D of Table 2 reports the distribution of sample observations across subsidiary countries by parent country.⁴⁴

Panel A shows that the sample is made up of 9,962 territorial subsidiaries, and 5,584 worldwide subsidiaries. Unfortunately, this uneven distribution is a function of data availability (the most complete financial statement data in Orbis are for European countries which, with the exception of the UK and Greece, use territorial systems) rather than the distribution of countries (53 of the 109 countries (49%) included in the Comtax database are territorial), or the

⁴² These rates are largely unchanged from January 1, 2006. Of the parent countries with more than 30 observations in my sample, only The Netherlands (30% at 1/1/06 and 26% at 1/1/07) had a different rate.

⁴³ The sample subsidiaries are a subset of common-parent subsidiaries.

⁴⁴ Countries are not included in Panel B if they have fewer than 50 observations. All observations are included in Panels A, C and D and in all regressions unless otherwise noted.

distribution of income (67% of global GDP in 2006 was in worldwide countries).⁴⁵ The worldwide subsidiaries are larger, on average, than those in the territorial group. As discussed by Huizinga and Laeven (2008), it is not surprising that the median value of *C*, the tax incentive variable, is close to zero in each of the subsamples since it is a weighted average of bilateral tax differences within a corporate group. The range of *C* in my sample (-0.36 to 0.60) is consistent with that in Huizinga and Laeven (2008) (-0.43 to 0.53).

Panel B of Table 2 reports the means of the variables grouped by subsidiary country. The first column (N) reports the number of observations and confirms that the sample is dominated by European subsidiaries. The second column (# parent countries) reports the number of different countries parents from which have subsidiaries in the given country. For example, the 204 Austrian subsidiaries are owned by parents in 24 different countries. The column % Territorial reports the percentage of subsidiaries in the given country that are owned by GUOs domiciled in territorial countries. The final seven columns report the means of the regression variables for each country.

Panel C of Table 2 reports the means of the variables grouped by parent country. The parents also are dominated by European countries, but subsidiaries of parents from non-European countries combine to represent 36% of the sample. In this panel, the second column reports the number of parents (i.e., Global Ultimate Owners) domiciled in the given country having subsidiaries in the sample. For example, the first row reports that 30 different Australian GUOs have a total of 80 subsidiaries in the sample.

⁴⁵ Bureau van Dijk obtains most of its financial statement data from the compulsory filings of corporations. Most European countries require private companies to file annual reports while other countries (e.g., the U.S.) do not have such requirements. Further details on the data sources and collection procedures can be obtained at the Bureau van Dijk website (www.bvdep.com).

Panel D of Table 2 reports the distribution of sample observations across subsidiary countries by parent country, reporting only those parent countries with at least 500 observations. All numbers except the first column (N) are percentages. For example, looking at the Belgium column, 31% of the 573 subsidiaries that have a Belgian parent are in Belgium and 1% are in Bulgaria.

5.0 Results

5.1 Tests of Hypothesis 1

To establish consistency with prior results, I first estimate Equation 1 on the full sample without the indicator variable (*TT*) and interaction term (*TT* * *C*). Table 3, Model 1 presents the results. The coefficient estimates on the labor and capital proxies and the tax variable, *C* (-0.94), are similar to those estimated in other studies using U.S. data only (Blouin et al, 2009) and European data only (Huizinga and Laeven, 2008) from different time periods.⁴⁶

Having established consistency with prior results in my data, I now proceed to the main tests of the paper. Models 2 and 3 in Table 3 present the results of estimating Equation 1 on the full sample, first without the two subsidiary-country variables (Model 2) and then with them. Focusing on Model 3, the estimate of the coefficient on *C* is negative (-0.48) and significant. Since *C* is calculated such that a negative value indicates a tax incentive to shift income in to the subsidiary subject to constraints, a negative coefficient is interpreted as tax-motivated income

⁴⁶ To control for the effect of outliers, I use robust regression, which uses an iterative approach to assign weights to each observation. Observations that are assigned a zero weight are not included in the final regression. This results in small variations in the N reported in different models using the same sample.

shifting. The estimate of the coefficient on TT * C is negative (-0.84) and significant, meaning that territorial subsidiaries shift more income than worldwide subsidiaries, all else equal.⁴⁷

The relative difference in magnitude is large, with the total slope coefficient for territorial firms nearly three times that of worldwide firms. In terms of economic magnitude, the estimate of the coefficient on *C* of -0.42 in Model 3 indicates that as a worldwide subsidiary's tax incentive goes from 0.1 to 0.2 (i.e., its incentive to shift out becomes greater), the natural log of its pretax income (in thousands of U.S. dollars) will decrease by 0.042. At the mean *LogPLBT* of 7.84, this translates into a reduction in reported income of \$104,000 (from \$2,540,000 to \$2,436,000), or 4.1%. The estimate of the coefficient of *TT* * *C* of -0.75 indicates that as a territorial subsidiary's tax incentive goes from 0.1 to 0.2, the natural log of its pretax income will decrease by 0.117 (-0.042 + -0.075 = -0.117), which translates to a reduction in pretax income of 11.0% (\$280,000).

On the surface, these results provide a clear answer to the primary question of the study: territorial multinationals shift more income than do worldwide multinationals with the same tax incentives and opportunities. The difference is both statistically and economically significant.

5.2 Robustness of results for H1

5.2.1 Controlled foreign corporation rules

The main variable of interest in the tests described in Table 3 is the interaction of the territorial indicator variable (TT) and the tax variable (C). The fact that TT is a country-level variable is problematic if it is correlated with other factors that could also explain variation in reported income. Most countries impose restrictions on their multinationals intended to limit

 $^{^{47}}$ Recall that *TT* is an indicator variable equal to 1 if the global ultimate owner of the subsidiary in the observation would be exempt from domestic tax on the subsidiary's income if the dividend were paid directly from the subsidiary to the GUO.

their ability to avoid tax in abusive ways. The most common such restriction is a controlled foreign corporation (CFC) rule. CFC rules allow the taxing authority to override the otherwise applicable tax law on an entity-by-entity basis when certain specific conditions are met.⁴⁸ A binary division of countries along this dimension is not straightforward because the trigger points for CFC rules vary across countries. However, accepting the inherent imprecision, I code an indicator variable, *NOCFC* = 1 if the country does not have explicit CFC rules.⁴⁹ I first substitute *NOCFC* for *TT* in Equation 1 and then augment the original Equation 1 with *NOCFC* and its interaction terms to determine if the results presented in Table 3 are sensitive to this additional control. I expect multinationals based in countries with no CFC rules to shift more than those in countries with CFC rules (i.e., that the coefficient estimate on *NOCFC* * *C* will be negative). Results are presented in Table 4.

Model 1 is a duplicate of Model 3 from Table 3 and is included for comparison purposes. Model 2 presents the results of estimating Equation 1 with *NOCFC* substituted for *TT*. The estimate on *C* is -0.58 and significant, indicating that multinationals domiciled in countries with CFC rules shift income for tax purposes. The estimate of the coefficient on *NOCFC* * *C* is also negative (-0.91) and significant, indicating that, as predicted, multinationals not subject to CFC rules engage in more income shifting. To determine whether the lack of CFC rules explains the difference in the shifting of worldwide and territorial firms documented in Table 3, I next include both *TT* and *NOCFC* in the same regression. Results are presented in Model 3 of Table 4.⁵⁰ The

⁴⁸ For example, France's law contains a CFC provision stating that income earned in a low-tax foreign country may be ineligible for the 95% exemption if certain conditions are met (e.g., the effective tax rate is less than 2/3 of the French rate). Such determinations are made on an entity-by-entity basis rather than a country-by-country basis. That is, a French parent could have two subsidiaries in Bermuda and one of them could trigger the CFC rule and one of them could not.

⁴⁹ I use *NOCFC* rather than its complement, *CFC* (=1 if the country has CFC rules), so that predicted signs will be consistent with those of TT.

⁵⁰ Because there are fewer than 200 observations that have TT = 0 and NOCFC = 1 (i.e., I do not have enough observations from worldwide countries that do not have CFC rules), I exclude NOCFC and NOCFC * C from the model and am effectively comparing the income shifting of three groups: worldwide firms, territorial firms subject to CFC rules, and territorial firms not subject to CFC rules.

coefficient estimate on TT * C remains negative (-0.56) and significant, evidence that the difference in shifting between territorial and worldwide firms found in the main tests is robust to controlling for the presence of CFC rules.

5.2.2 Data coverage

As discussed in Section 4.1.1, a corporation will not be included in the data which is aggregated and then used to calculate *C* if it does not have operating revenue reported in Orbis. To ensure that such missing data do not affect inferences, I calculate two proportions for each observation: the number of corporations ultimately controlled by the GUO reporting positive operating revenue as a fraction of the total number of subsidiaries ultimately controlled by the GUO, and the number of countries in which the GUO has ultimately-controlled corporations with positive operating revenue as a fraction of the total number of countries in which the GUO has ultimately-controlled corporations with positive operating revenue as a fraction of the total number of countries in which the GUO has ultimately-controlled corporations. The mean (median) values of the two proportions in the full sample are 0.47 (0.40) and 0.68 (0.67), respectively. In untabulated tests, I restrict the sample to observations with various thresholds for both the subsidiary-level and country-level proportions. Inferences remain unchanged up to the 0.50 (0.75) threshold for the subsidiary-level (country-level) proportion. Beyond these thresholds (i.e., when only GUOs having data for at least 50% of their total subsidiaries or 75% of the countries in which it operates), the estimate of the coefficient on TT * C becomes positive and is not statistically significant.

5.2.3 Regressions by parent country

In grouping countries by their taxation of foreign dividends for the tests reported in Table 3, an assumption was made that there were no fundamental differences in the countries that

would affect the propensity to shift income.⁵¹ To test the validity of this assumption, I estimate Equation 1 (without TT and TT * C) by country for parent countries having at least 600 observations. Results are presented in Table 5. The first column (Full sample) uses the full sample (i.e., not just observations from the nine countries reported in the table) and is included for comparison purposes.⁵² The remaining columns present results using only observations of multinationals domiciled in the country listed in the column heading. For eight (five) of the nine countries, the estimate of the coefficient on C is negative (negative and significant). Only Japan does not have a negative estimate for C.⁵³ The estimates of C range from -2.04 (Switzerland) to 0.41 (Japan), with a mean of -0.95 and a standard deviation of 0.85.⁵⁴ These estimates are consistent with multinationals domiciled in all countries except Japan engaging in tax-motivated income shifting. Because Japan represents 20% (7%) of the worldwide (total) observations in the sample, it could be driving the observed difference in shifting across the two groups, and thus requires further investigation.

5.3 The case of Japan

The finding that Japan is an outlier in tax planning is consistent with the finding in Markle and Shackelford (2010) that Japanese multinationals have had higher effective tax rates than multinationals in other countries for the last two decades. Unfortunately, Markle and Shackelford (2010) find no explanation for how or why Japan has remained an outlier among the major economies of the world for so long and suggest that future research on the topic is needed. I first examine the data to determine if there might be something different about the Japanese

⁵¹ For example, if a significant portion of the territorial subsample was comprised of firms domiciled in countries that allow extreme amounts of income shifting, the difference being attributed to the worldwide/territorial split may be driven by those extreme observations.

⁵² This test is identical to that reported in Model 1 of Table 3 except that it includes *STABILITY* and *LAW*.

⁵³ As discussed by Collins et al (1998), a positive coefficient is not evidence of shifting income to pay more tax, but rather is evidence that the non-tax factors affecting income shifting dominate the tax factors. ⁵⁴ With Japan excluded, the mean is -0.99 and the standard deviation is 0.67.

sample that was drawn. As reported in Panel D of Table 2, the distribution of the 1,104 Japanese observations in the sample is consistent with those of the other parent countries. The correlation between the percentage of observations in each country for the whole sample and for Japan when sample subsidiaries in Japan are excluded (i.e., between the %All column and the Japan column) is 86%, indicating that there is nothing anomalous about the distribution of Japanese observations in the sample.⁵⁵

To investigate the case of Japan more specifically, I reviewed the existing literature and had discussions with numerous experts in the field. This resulted in a long list of anecdotes explaining why it is not surprising that Japan appears not to engage in income shifting, but nothing empirically testable.⁵⁶ There is a difference in Japanese tax law that may partially explain the lack of evidence of shifting using my research design. As documented by Gramlich, et al. (2004), Japanese law dictates that arm's length prices must be used for transactions between Japanese companies and their foreign affiliates, but does not have the same requirement for transactions between domestic Japanese companies. Gramlich, et al (2004) hypothesize and find that Japanese firms that are members of keiretsu engage in more within-Japan shifting than independent firms.⁵⁷ It is possible, then, that Japanese firms engage in less cross-jurisdiction income shifting because they have more domestic shifting opportunities than firms in other countries. Unfortunately, I do not have access to the data necessary to test this hypothesis.

⁵⁵ In untabulated tests, I estimate Equation 1 on a subsample that includes only foreign subsidiaries. Inferences from these tests are unchanged from those from the tests on the full sample.

⁵⁶ I conducted a series of tests in which I included variables intended to capture countries' cultures (Kaufmann et al., 2008) and transfer pricing rules (Mescall, 2010) in the Equation 1. None of these variables affect the coefficients of interest, so the results of these tests are not reported.

⁵⁷ From Gramlich, et al (2004): "Keiretsu … represent diversified groups of manufacturing and trading firms that share the same financial institutions and adopt coordinated business strategies. … keiretsu members benefit from distribution and production arrangements, dominant access to markets, and low-cost flexible financing."

Anecdotes conveyed by experts include the lack of due process in the Japanese system, a cultural norm toward compliance, and a "quid pro quo" element to the tax system whereby tax payments are part of an overall deal negotiated with the government (e.g., firms pay high taxes in exchange for the government providing infrastructure of direct benefit to the firm). As none of these ideas are testable empirically, I leave further investigation of this for future research.

5.4 Tests of Hypothesis 2

My second hypothesis states that the difference in the tax-motivated income shifting of territorial and worldwide firms is decreasing in the ability of the parent to leave the income in the foreign country. This prediction is based on the assumption that worldwide firms have more incentive to shift income when the shifted income can be reinvested abroad (and thus defer the home country tax liability) while territorial firms' incentive is unrelated to what happens to the income after it is shifted. I test this hypothesis using two different proxies for the ability to defer repatriation of dividends: foreign reinvestment opportunities and lack of cash constraint in the parent country.

5.4.1 Foreign reinvestment opportunities

I calculate the asset growth of the subsidiary (where, as in previous tests, all entities within a country are aggregated into one "subsidiary) as a proxy for reinvestment opportunities.⁵⁸ Assets are defined as total assets less cash. For the tabulated tests, I use the asset growth from the end of 2004 to the end of 2007.⁵⁹

⁵⁸ Because commonly-controlled subsidiaries can finance one another, an alternative approach is to use aggregate (rather than country-specific) foreign asset growth as a proxy for reinvestment opportunities. Inferences remain unchanged when this proxy is used.

⁵⁹ In untabulated results, I use growth in 2006, growth in 2005-2006, and growth in 2007 and inferences are unchanged.

Using the calculated asset growth, I sort observations within parent countries both in quintiles and above/below the median. I then code three indicator variables: ABOVE = 1 if the asset growth is above the median; TOPQ = 1 if the asset growth is in the top quintile; and BOTTOMQ = 1 if the asset growth is in the bottom quintile. I then include each of the three in Equation 1 in turn to test H2. Focusing first on the split at the median, if H2 is correct, four things should be true. First, the coefficient on TT * C should be negative, indicating that, for firms with below-median reinvestment opportunities, territorial firms shift more than worldwide firms. Second, the coefficient on C * ABOVE should be negative, indicating that worldwide firms with more investment opportunities shift more. Third, the sum of C * ABOVE and TT * C * ABOVE should be zero, indicating that reinvestment opportunities do not affect the income shifting for territorial firms. Fourth, the sum of TT * C and TT * C * ABOVE should be zero, indicating that, for firms with more reinvestment opportunities, there is no difference in the income shifting of worldwide and territorial firms. Predictions are the same when TOPQ is substituted for ABOVE. When BOTTOMQ is substituted for ABOVE, the predicted sign on C * BOTTOMQ is positive and the predicted sign on the sum of TT * C and TT * C * BOTTOMQis negative.

Results are presented in Table 6. Consistent with predictions, while there is a significant difference in the income shifting of territorial and worldwide firms with below-median reinvestment opportunities (as evidenced by the estimate of -1.20 on TT * C), there is no difference in the income shifting of territorial and worldwide firms with above-median reinvestment opportunities: the F-statistic for the difference of the total slope coefficients presented below the table is not statistically significant. As a lack of statistical significance is not conclusive evidence of a lack of difference, the other two tests lend additional support to the

conclusion. When the top quintile is split out, all inferences remain the same as when the split is done at the median. When the bottom quintile is split out, the F-statistic for the difference is strongly significant, providing more direct evidence that the difference in shifting behavior of the two groups is affected by the opportunity to leave the shifted income abroad.

5.4.2 Domestic cash constraints

As a proxy for the domestic cash constraints of the parent, I calculate the domestic leverage ((Current liabilities + Non-current liabilities)/Shareholders' equity) for each parent by aggregating all unconsolidated data in the home country. I then rank firms within countries in quintiles and above and below the median based on this calculated ratio and code three indicator variables, *BELOW*, *TOPQ* and *BOTTOMQ*. I use *BELOW* instead of *ABOVE* so that sign predictions will be the same as for the previous tests using reinvestment opportunities. The predictions for the coefficients are the same as those in the previous test (i.e., TT * C negative, C * BELOW negative, (C * BELOW + TT * C * BELOW) zero, and (TT * C + TT * C * BELOW) zero).

Results are presented in Table 7. The sample used for these tests is smaller because not all parent firms have the necessary data for calculating domestic leverage. The estimate of the coefficient on TT * C is negative (-1.69) and significant, indicating that among firms with abovemedian domestic cash constraints, territorial firms shift more than worldwides. The estimate of the coefficient on C * BELOW is negative (-0.49), consistent with the prediction of H2, but is not statistically significant. The sum of the estimates for C * BELOW and TT * C * BELOW is positive and significant, as shown in the first F-test below the table. This result indicates that, within the territorial subsample, there is a positive association between domestic cash constraints and tax-motivated income shifting (i.e., parents that need more cash at home shift more income among their affiliates). Finally, the sum of TT * C and TT * C * BELOW is insignificant, indicating that, among firms with less domestic cash constraint, the difference between the groups is not different from zero.

Taken as a whole, the results of the tests of Hypothesis 2 support the conclusion that worldwide firms with the opportunity and ability to leave shifted earnings abroad indefinitely shift as much income as their territorial counterparts. These tests show that the differences between the average firms in the two groups identified in the main tests are driven by differences in the subsamples of firms facing domestic cash constraints or weaker foreign reinvestment opportunities.

5.6 Tests of Hypotheses 3a and 3b

I conclude the empirical tests in the paper by examining a possible consequence of the taxation of foreign dividends, the trapping of cash abroad. If, as shown, in the tests of H1, territorial firms shift more income to their low-tax subsidiaries, it is of interest to know if the differences in cash levels are consistent with the differences in shifting. Hypothesis 3a predicts that all firms (i.e., both territorial and worldwide) will have excess cash in countries with higher withholding tax rates on dividends. Hypothesis 3b predicts that worldwide firms will have excess cash in countries dividends from which will face a higher residual home country tax rate. To maximize available observations for this test, I form a new sample, keeping all observations with the required data for this model, regardless of whether they were in the previous sample or not.⁶⁰ Consistent with the income shifting tests, I aggregate all subsidiaries of the same GUO by country.

36

⁶⁰ Results are qualitatively the same when a subsample of the income shifting sample is used.

5.6.1 Withholding taxes

To test H3a, I estimate Equation 2 with the withholding tax rate as the *TAX* variable. I do this test using two different rates: the statutory withholding rate on dividends paid from the subsidiary country to the parent country (note that these are country-pair-specific rates), and the effective withholding rate, which captures the percentage of pretax income of the subsidiary that is paid as withholding tax.⁶¹ For each rate, I estimate Equation 2 first without *TT* and the interaction term and then with them. In the second model, I expect the coefficient on *RATE* (the association between withholding tax rates and level of cash for worldwide firms) to be positive, and the coefficient on *TT* * *RATE* to be zero.

Results are presented in Table 8. Because DOM_RD is missing for 42% of the observations and inferences are unchanged by its inclusion, I tabulate only the results with it excluded. Focusing on the second specification in first column (the statutory withholding rate), the coefficient on *RATE* is positive, indicating that as the withholding tax rate increases, the worldwide subsidiary holds more cash. The coefficient on *TT* * *RATE* is not statistically different from zero, indicating that subsidiaries of multinationals in both groups have similar levels of cash trapped by withholding tax rates.

5.6.1 Home country tax

To test H3b, I estimate Equation 2 with an estimate of the residual home country tax rate on repatriated dividends as the *RATE* variable. This home country tax rate is calculated as described in Barrios et al. (2010) and is, like the effective withholding tax rate, expressed as a percentage of the pretax income of the subsidiary. If τ_P is the statutory tax rate in the parent

⁶¹ As per the example given in Section 3.2, where the host country rate is τ_s and the withholding rate is w_s , the rate used in the first test is w_s , and the rate used in the second test is $w_s(1 - \tau_s)$.

country, τ_s is the statutory tax rate in the subsidiary country, and w_s is the withholding rate on dividends, the home country tax rate is max $(0, \tau_P - (\tau_S - w_S(1 - \tau_s)))$ for worldwide firms and $0.05 * \tau_P * (\tau_S - w_S(1 - \tau_s))$ for firms in territorial countries that exempt 95% of foreign dividends.^{62,63}

Results are presented in the right half of Table 8. The first set of two columns (HOME TAX) includes the full sample. In the first specification (without *TT* indicator), the positive and significant coefficient on *RATE* indicates that the residual home country tax increases the excess cash held in a subsidiary country. When the *TT* indicator is included in the next column, *RATE* and *TT* * *RATE* have opposite signs, but neither is statistically significant. Because home country tax is zero for all observations in which the parent fully exempts foreign dividends, I next exclude those observations from the territorial group and run the test again. These results are presented in the second-to-last column of Table 8. In this case, *RATE* is positive and significant (as evidenced by the F-test presented at the bottom of the column). These results indicate that the excess cash holdings of worldwide foreign subsidiaries are increasing in the home country tax while those of territorial foreign subsidiaries are decreasing in the home country tax.

⁶² These calculations assume that the worldwide firm gets foreign tax credits for both foreign income tax and withholding tax and that the territorial firm does not receive foreign tax credits for either tax. This represents reality for the vast majority of country pairs, but there are country pairs that grant different types of foreign tax credits. In calculating the variables used in these tests, the specific type of credit granted by the parent country is a factor in the calculation of the home country tax rate.

⁶³ Example: subsidiary earns \$100, $\tau_P = 40\%$, $\tau_s = 30\%$ and $w_s = 10\%$. Subsidiary pays \$30 of tax to host country and distributes \$70 to parent as dividend, but \$7 is paid as withholding tax. Total tax paid to host country is \$37, which is less than $\tau_P * $100 = 40 . \$3 is the home country tax paid, so 3% will be the home country tax rate for a worldwide firm. For a territorial firm that pays tax on 5% of foreign dividends, the home country tax will be 5% * \$70 * 40% = \$1.40, so the rate used would be 1.4%.

Finally, I run the same test on subsamples of worldwide observations and U.S.

observations.⁶⁴ These results are presented in the last two columns of Table 8. In both cases, the estimate on *RATE* is positive and significant, consistent with predictions.⁶⁵ These results are consistent with those of Foley et al. (2007), Blouin et al. (2010), and Graham et al. (2010) and indicate that multinationals subject to worldwide tax regimes (and U.S. firms in particular) bear a dead-weight cost in the form of inefficient allocation of their resources. While territorial subsidiaries are distributing cash back to their parents, worldwide subsidiaries are holding the cash, at least in part to avoid the tax cost that would be borne if it was distributed as a dividend.

6.0 Conclusion

The taxation of foreign commerce and the erosion of tax bases through international income shifting are subjects of ongoing and contentious debate in many countries as the increasing globalization of markets makes their consequences for national treasuries, firms and individuals more significant. This paper contributes needed empirical data to those debates by directly comparing the income shifting behaviors of multinationals subject to different systems of taxation of their foreign earnings and finding systematic differences between them.

As is true of results of any study of income shifting, my results rely on the validity of the empirical model of expected income. To the extent that actual earnings are determined by factors other than capital, labor and productivity inputs, the amount of shifted income is

⁶⁴ There is reason to expect that the U.S. may be unique among worldwide countries in having cash trapped abroad because it does not permit the foreign subsidiaries of its multinationals to lend money to the parent. When a foreign subsidiary of a U.S. multinational lends money to its parent, U.S. tax law treats the loan as a deemed dividend. To my knowledge, all other countries permit such lending without this consequence.
⁶⁵ In untabulated results, I estimate the same model on subsamples of Japan, UK, France, and Germany. The estimate on *RATE*

⁶⁵ In untabulated results, I estimate the same model on subsamples of Japan, UK, France, and Germany. The estimate on *RATE* is positive and significant for Japan, and insignificant for the other three. I also estimate a model with both the effective withholding rate and the home country rate included on various subsamples. Both have positive and significant coefficients for the full sample, the subsample excluding fully-exempt, the worldwide subsample, and the U.S.-only subsample. In the other subsamples tested (95%-exempt, UK, Japan, France, Germany), only the withholding rate in the Germany subsample has a positive and significant coefficient.

measured with error. Another caveat is that the sample subsidiaries in this study are heavily concentrated in Europe; it is possible that the findings are unique to subsidiaries in that region and not generalizable.

I find that multinationals domiciled in territorial countries, on average, shift more income among their foreign affiliates than do those domiciled in worldwide countries. In more detailed tests, I find that the income shifting of worldwide firms that are able to leave the shifted income invested abroad and that of similar territorial firms are not statistically different. I also find that all multinationals, territorial and worldwide alike, hold excess cash in countries with higher withholding tax rates on dividends and that worldwide subsidiaries, those of U.S. parents in particular, hold more cash when there is a potential for home country tax to be due on repatriated dividends. Taken as a whole, my findings suggest that a change from a worldwide system to a territorial one will be accompanied by an increase in income shifting by the average firm, but not by firms that have consistently reinvested foreign earnings abroad. My results also suggest that such a change would remove the inefficiency of having cash trapped in lower-tax jurisdictions.

References

Altshuler, Rosanne, 2000. Recent Developments in the Debate on Deferral. 87 Tax Notes 255.

- Altshuler, Rosanne and Harry Grubert, 2001. Where Will They Go if We Go Territorial? Dividend Exemption and the Location Decisions of U.S. Multinational Corporations. National Tax Journal, Vol. LIV, No. 4.
- Barrios, Salvador, Harry Huizinga, Luc Laeven and Gaetan Nicodeme, 2010. International Taxation and Multinational Firm Location Decisions. Tilburg University Working Paper, October 22.
- Benassy-Quere, Agnes, Lionel Fontagne and Amina Lahreche-Revil, 2000. Foreign Direct Investment and the Prospects for Tax Co-ordination in Europe. CEPII, Document de travail no 2000-06.
- Blouin, Jennifer, Leslie Robinson and Jeri Seidman, 2009. Income Shifting in U.S.-Based Multinational Firms. Wharton/Dartmouth/Texas Working Paper.
- Blouin, Jennifer, Linda Krull and Leslie Robinson, 2010. Is U.S. Multinational Intra-Firm Dividend Policy Influenced by Reporting Incentives?. Wharton/Dartmouth/Oregon Working Paper.
- Blumenthal, Marsha and Joel Slemrod, 1996. The Income Tax Compliance Cost of Big Business. Public Finance Quarterly, Vol. 24 No. 4, October, 1996, 411-438.
- Clausing, Kimberly A., 2009. The Consequences of Territorial and Worldwide Systems of International Taxation. Reed College Working Paper.
- Collins, Julie, Deen Kemsley and Mark Lang, 1998. Cross-jurisdictional Income Shifting and Earnings Valuation. Journal of Accounting Research, Vol. 36, No. 2, pp. 209-229.
- de Mooij, Ruud A. and Sjef Ederveen, 2003. Taxation and Foreign Direct Investment: A Synthesis of Empirical Research. International Tax and Public Finance, 10, 673-693.
- Devereux, Michael P. and Giorgia Maffini, 2007. The Impact of Taxation on the Location of Capital, Firms and Profit: A Survey of Empirical Evidence. Oxford University Centre for Business Taxation Working Paper Series, WP 07/02, Said Business School, Oxford.
- Dischinger, Matthias, 2009. Profit Shifting by Multinationals and the Ownership Share: Evidence from European Micro Data. University of Munich Working Paper, November 2.

- Dischinger, Matthias and Nadine Riedel, 2008. Corporate Taxes, Profit Shifting and the Location of Intangibles within Multinational Firms. University of Munich Working paper, June 9.
- Drucker, Jesse, 2010. Companies Dodge \$60 Billion in Taxes Even Tea Party Condems. Bloomberg BusinessWeek, June 28.
- Dyreng, Scott D. and Bradley P. Lindsey, 2009. Using Financial Accounting Data to Examine the Effect of Foreign Operations Located in Tax Havens and Other Countries on U.S. Multinational Firms' Tax Rates. Journal of Accounting Research, Vol. 47 No. 5, 1283-1316.
- Foley, C. Fritz, Jay C. Hartzell, Sheridan Titman, and Garry Twite, 2007. Why do firms hold so much cash? A tax-based explanation. Journal of Financial Economics 86, 579-607.
- Gordon, Roger H. and James R. Hines Jr., 2002. International Taxation. NBER Working Paper 8854, April.
- Government Accountability Office, 2008. Effective Tax Rates Are Correlated with Where Income Is Reported. Report to the Committee on Finance, U.S. Senate, GAO-08-950.
- Government Accountability Office, 2009. Study Countries That Exempt Foreign-Source Income Face Compliance Risks and Burdens Similar to Those in the United States. Report to the Committee on Finance, U.S. Senate, GAO-09-934.
- Graham, John, Michelle Hanlon and Terry Shevlin, 2010. Real Effects of Accounting Rules: Evidence from Multinational Firms' Investment Location and Profit Repatriation Decisions. MIT Working paper.
- Graham, John, Michelle Hanlon and Terry Shevlin, 2010. Barriers to Mobility: The Lockout Effect of U.S. Taxation of Worldwide Corporate Profits. MIT Working paper.
- Gramlich, Jeffrey D., Piman Limpaphayom and S. Ghon Rhee, 2004. Taxes, keiretsu affiliation, and income shifting. Journal of Accounting and Economics 37, 203-228.
- Grubert, Harry and John Mutti, 2001. Taxing International Business Income: Dividend Exemption versus the Current System. The AEI Press.
- Hajkova, Dana, Guiseppe Nicoletti, Laura Vartia and Kwang-Yeol Yoo, 2006. Taxation, Business Environment and FDI Location in OECD Countries. Working paper, June.
- Harris, David, Randall Morck, Joel Slemrod and Bernard Yeung, 1991. Income Shifting in U.S. Multinational Corporations. NBER Working Paper 3924.
- Hartman, David G., 1985. Tax Policy and Foreign Direct Investment. Journal of Public Economics 26, pp. 107-121.

- Hines, James R. Jr., 1996. Altered States: Taxes and the Location of Foreign Direct Investment in America. The American Economic Review, Vol. 86, No. 5, pp. 1076-1094.
- Hines, James R. Jr. and Eric M. Rice, 1994. Fiscal Paradise: Foreign Tax Havens and American Business. The Quarterly Journal of Economics.
- Huizinga, Harry and Luc Laeven, 2008. International profit shifting within multinationals: A multi-country perspective. Journal of Public Economics 92, 1164-1182.
- Huizinga, Harry P. and Johannes Voget, 2009. International Taxation and the Direction and Volume of Cross-Border M&As. The Journal of Finance, Vol. LXIV, No. 3.
- Kaufmann, Daniel, Aart Kraay and Massimo Mastruzzi, 2008. Governance Matters VII: Aggregate and Individual Governance Indicators 1996-2007. The World Bank Development Research Group, Macroeconomic and Growth Team & World Bank Institute Global Governance Program, June.
- Klassen, Kenneth J., Mark Lang, and Mark Wolfson, 1993. Geographic Income Shifting by Multinational Corporations in Response to Tax Rate Changes. Journal of Accounting Research, Vol. 31, 141-173.
- Klassen, Kenneth J. and Stacie K. Laplante, 2009. The Effect of Financial Reporting and Foreign Investment Opportunities on Cross-Jurisdictional Income Shifting. University of Waterloo and University of Georgia Working Paper, October.
- Library of Congress, 1994. Country Study: Japan. http://lcweb2.loc.gov/frd/cs/jptoc.html. Last accessed July, 2010.
- Markle, Kevin S. and Douglas A. Shackelford, 2010. Do Multinationals or Domestic Firms Face Higher Effective Tax Rates? University of North Carolina Working Paper.
- Mescall, Devan, 2010. How do transfer pricing policies affect premia in cross-border mergers and acquisitions? University of Hawaii at Manoa working paper.
- Organization for Economic Co-operation and Development, 2009. Transfer Pricing Guidelines Multinational Enterprises and Tax Administrations 2009. OECD, Paris.
- Samuels, John M., 2009. American Tax Isolationism. Tax Notes, June 29.
- Scholes, M., Wolfson, M., Erickson, M., Maydew, E., Shevlin, T. 2009. Taxes and business strategy: A planning approach (4th edition), Pearson Prentice Hall, Upper Saddle River, NJ.

- Slemrod, Joel, 1990. Tax Effects on Foreign Direct Investment in the U.S.: Evidence from a Cross-country Comparison. In Taxation in the Global Economy, Assaf Razin and Joel Slemrod, editors. The University of Chicago Press.
- Smart, Michael, 2010. Repatriation taxes and foreign direct investment: Evidence from tax treaties. University of Toronto working paper.
- Sullivan, Martin, 2008. U.S. Multinationals Shifting Profits Out of the United States. Tax Notes, March 10.
- Taxes The Tax Magazine, 2010. In Search of a 21st Century U.S. Tax System, a transcript of the proceedings of the 11th Annual Tax Policy & Practice Symposium. CCH, June.
- Voget, Johannes, 2008. Headquarter Relocations and International Taxation. Tilburg University Working Paper, April 17.
- Wijeweera, Albert, Brian Dollery and Don Clark, 2007. Corporate tax rates and foreign direct investment in the United States. Applied Economics 39, 109-117.

Table 1 – Sample countries

Uruguay

Country	Statutory rate	Mean wh rate out	Mean wh rate in	Parents	Sample Subsidiaries	Common-parent subsidiaries	Country	Statutory rate	Mean wh rate out	Mean wh rate in	Parents	Sample Subsidiaries	Common-parent subsidiaries
Territorial							Worldwide						
Australia	30%	0%	8%	30		36	Argentina	35%	0%	9%			7
Austria	25%	14%	5%	111	204	551	Brazil	32%	0%	9%	5		15
Belgium	34%	13%	5%	231	871	1,196	Bulgaria	10%	5%	6%		102	136
Bermuda	0%	0%	11%	18		20	Chile	17%	22%	9%			10
Bolivia	25%	12%	10%			1	China	33%	0%	6%	3		309
Canada	32%	15%	6%	23		30	Colombia	34%	0%	11%	1		2
Cayman Islands	0%	0%	11%	8		10	Cyprus	10%	0%	7%	4		4
Croatia	20%	0%	7%	3	137	180	Ecuador	25%	0%	10%		3	3
Czech Republic	24%	9%	5%		579	725	Greece	29%	0%	6%	36		342
Denmark	28%	11%	5%	278	484	969	India	43%	0%	8%	23		99
Estonia	23%	0%	6%	20	227	366	Indonesia	30%	16%	8%			2
Finland	26%	15%	5%	108	484	751	Ireland	13%	12%	6%	42	1	551
France	34%	10%	4%	386	1,883	2,854	Jamaica	33%	31%	9%			1
Germany	40%	11%	5%	579	1,434	2,167	Japan	43%	16%	7%	372	261	541
Hong Kong	18%	0%	11%	3		4	Liechtenstein	20%	4%	10%	3		3
Hungary	20%	0%	5%	5	200	293	Malta	35%	0%	6%			1
Iceland	18%	12%	8%	10	4	21	Mexico	29%	9%	7%	4		4
Italy	37%	14%	5%	372	1,193	1,677	New Zealand	33%	15%	9%	3		9
Kuwait	55%	0%	9%	3		3	Peru	30%	4%	10%			17
Latvia	15%	7%	6%		6	157	Poland	19%	11%	5%	28	842	1,253
Lithuania	19%	12%	6%	3		137	Portugal	25%	13%	6%	37	505	737
Luxembourg	30%	9%	5%	65	61	172	Romania	16%	10%	6%		193	252
Malaysia	28%	0%	7%	2		4	Russia	24%	12%	6%	4		354
Netherlands	26%	8%	4%	159	311	716	Saudi Arabia	20%	5%	10%	4		4
Netherlands Antilles	3%	0%	11%	6		6	South Korea	28%	18%	7%	45	238	300
Norway	28%	13%	6%	86	288	1,162	Taiwan	25%	23%	10%	13		20
Panama	30%	10%	10%			2	Trinidad and Tobago	25%	10%	9%			1
Singapore	20%	0%	7%	12		187	Ukraine	25%	11%	6%		48	83
Slovak Republic	19%	0%	5%	3	215	309	United Kingdom	30%	0%	5%	470	2,040	3,364
Slovenia	25%	17%	6%	4	14	17	United States	40%	20%	6%	802		1,224
South Africa	37%	0%	6%	11		26							
Spain	33%	11%	5%	297	1,542	2,118							
Sweden	28%	3%	4%	622	1,167	1,702							
Switzerland	16%	17%	4%	204	9	233							
Turkey	20%	13%	8%	13		59							
United Arab Emirates	50%	0%	9%	3		3							

This table reports summary statistics for all countries included in the study. The first column reports the statutory tax rates (which include subnational taxes for a representative firm in the country) used for each country. Rates are current as of January 1, 2007. The Parents column reports the number of unique parents domiciled in the given country that have subsidiaries in the sample. The Sample subsidiaries column reports the number of sample observations having subsidiaries domiciled in the given country. The Common-parent subsidiaries column reports the number of subsidiaries domiciled in the country that contribute to the calculation of *C*, the tax variable. The sample subsidiaries are a subset of the common-parent subsidiaries.

1

30% 11% 10%

Table 2 – Descriptive statistics

	-					
	Ν	Mean	Median	Max	Min	Stdev
<u>Territorial</u>						
Number of parents	3,721					
Log(Pretax income)	9,962	7.20	7.18	16.08	0.00	2.36
С	9,962	-0.02	-0.01	0.52	-0.32	0.09
Log(Compensation)	9,962	8.20	8.14	16.06	0.00	2.05
Log(Tangible fixed assets)	9,962	7.09	7.17	17.53	0.00	2.95
Log(Value added)	9,962	10.39	10.48	18.03	2.26	1.46
NOCFC	9,962	0.26	0.00	1.00	0.00	0.44
Stability	9,962	0.69	0.61	1.59	-0.90	0.35
Rule of law	9,962	1.24	1.38	2.06	-1.02	0.61
Worldwide						
Number of parents	1,890					
Log(Pretax income)	5,584	7.84	7.79	17.32	0.00	2.30 *
С	5,584	-0.01	-0.01	0.60	-0.36	0.10 *
Log(Compensation)	5,584	8.74	8.67	15.82	0.00	1.91 *
Log(Tangible fixed assets)	5,584	7.46	7.46	18.06	0.00	3.03 *
Log(Value added)	5,584	10.76	10.57	18.03	3.26	1.96 *
NOCFC	5,584	0.05	0.00	1.00	0.00	0.21 *
Stability	5,584	0.67	0.61	1.59	-0.90	0.30 *
Rule of law	5,584	1.29	1.38	2.06	-1.02	0.56 *

Panel A – Full sample by subsample

Panel A reports summary statistics for the two subsamples of the main sample. All data are for the 2006 calendar year. Log(Pretax income) is the natural logarithm of profit before income tax expense (in thousands of dollars). C is the family-level tax incentive measure developed by Huizinga and Laeven (2008). Log(Labor costs) is the natural logarithm of the compensation expense (in thousands of dollars) of the subsidiary. Log(Tangible fixed assets) is the natural logarithm of the tangible fixed assets (in thousands of dollars) of the subsidiary. Log(Value added) is the natural logarithm of value added in 2006 in the subsidiary's country (in millions of U.S. dollars). *NOCFC*=1 if the country does not have controlled foreign corporation rules; 0 otherwise. Stability and Rule of law are indexes running from -2.5 to 2.5 from the Worldwide Governance Indicators (Kaufmann, et al., 2008). Stability is designed to capture "perceptions of the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means, including domestic violence and terrorism." Rule of law is designed to capture "the extent to which agents have confidence in and abide by the rules of society, and in particular the quality of contract enforcement, the police, and the courts, as well as the likelihood of crime and violence."

* Indicates means are different at the 5% level.

Panel B – Sample by subsidiary country

Subsidiary country	Z	<pre># parent countries</pre>	% Territorial	U	Log(PLBT)	Log(Comp)	Log(Assets)	Log(Value Added)	NOCFC	Stability	Rule of law
Austria	204	24	0.71	(0.08)	7.94	9.16	8.02	8.89	0.27	1.03	1.85
Belgium	871	28	0.67	0.02	7.61	8.75	7.26	9.03	0.35	0.79	1.39
Bulgaria	102	21	0.70	(0.22)	6.76	6.63	6.96	10.36	0.38	0.38	(0.19)
Croatia	137	22	0.75	(0.14)	6.73	7.21	6.79	10.67	0.31	0.41	(0.05)
Czech Republic	579	37	0.66	(0.09)	6.94	7.67	7.10	11.49	0.26	0.87	0.75
Denmark	484	25	0.71	(0.04)	7.52	8.67	6.99	10.61	0.11	0.86	1.95
Estonia	227	19	0.87	(0.07)	5.82	6.33	5.54	9.71	0.07	0.76	0.94
Finland	484	24	0.76	(0.05)	6.65	7.76	5.75	8.36	0.11	1.47	1.96
France	1,883	42	0.65	0.02	7.35	8.77	7.03	10.58	0.20	0.51	1.38
Germany	1,434	38	0.59	0.10	8.29	9.41	8.11	10.82	0.17	0.92	1.73
Hungary	200	23	0.73	(0.15)	6.72	7.46	7.09	13.18	0.25	0.83	0.80
Italy	1,193	36	0.68	0.07	7.34	8.44	7.16	10.29	0.18	0.42	0.34
Japan	261	14	0.05	0.05	9.70	8.63	10.50	16.36	0.02	1.10	1.38
Luxembourg	61	13	0.75	(0.05)	7.52	8.34	6.83	6.43	0.38	1.50	1.81
Netherlands	311	25	0.53	(0.08)	8.51	8.85	7.75	9.53	0.22	0.80	1.72
Norway	288	19	0.80	(0.02)	7.96	8.72	6.89	10.73	0.11	1.18	2.00
Poland	842	34	0.72	(0.14)	6.66	7.03	6.72	11.28	0.22	0.33	0.28
Portugal	505	27	0.69	(0.08)	6.42	7.40	6.49	8.17	0.14	0.91	0.94
Romania	193	21	0.67	(0.16)	6.59	6.98	7.30	11.72	0.30	0.23	(0.20)
Slovak Republic	215	24	0.73	(0.15)	6.33	6.96	6.90	10.63	0.30	0.69	0.41
South Korea	238	19	0.34	(0.02)	8.48	8.52	8.48	14.98	0.12	0.41	0.74
Spain	1,542	35	0.70	0.01	7.05	8.22	6.99	9.95	0.14	0.17	1.04
Sweden	1,167	31	0.79	(0.04)	7.07	7.95	6.33	11.29	0.10	1.17	1.88
United Kingdom	2,040	44	0.44	(0.04)	8.02	9.19	7.88	10.33	0.17	0.61	1.70

Panel B reports means of variables grouped by subsidiary country. Countries with fewer than 50 observations are not reported. N is the number of observations in which the given country is the subsidiary country. # parent countries reports the number of different parent countries having at least one subsidiary in the country. %Territorial reports the percentage of subsidiaries in the given country that are controlled by parents in territorial countries. C is the family-level tax incentive measure developed by Huizinga and Laeven (2008). Log(Pretax income) is the natural logarithm of profit before income tax expense (in thousands of dollars). Log(Labor costs) is the natural logarithm of the compensation expense (in thousands of dollars). Log(Value Added) is the natural logarithm of value added in 2006 in the subsidiary's country (in millions of U.S. dollars). *NOCFC*=1 if the country does not have controlled foreign corporation rules; 0 otherwise. Stability and Rule of law are indexes running from -2.5 to 2.5 from the Worldwide Governance Indicators (Kaufmann, et al., 2008). Stability is designed to capture "perceptions of the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means, including domestic violence and terrorism." Rule of law is designed to capture "the extent to which agents have confidence in and abide by the rules of society, and in particular the quality of contract enforcement, the police, and the courts, as well as the likelihood of crime and violence."

Panel C – Sample by parent country

					_		Added			
		parents		g(PLBT)	g(Comp)	g(Assets)	g(Value	DCFC	ability	ıle of law
Parent country	Z	# #	U	Lo	Lo	Lo	Lo	ž	Sta	Ru
<u>Territorial</u>										
Australia	80	30	0.04	7.32	8.11	6.75	10.17	0	0.63	1.34
Austria	300	111	(0.01)	6.92	7.82	7.50	10.59	1	0.68	0.97
Belgium	573	231	(0.03)	6.95	8.04	7.10	9.95	1	0.67	1.24
Bermuda	75	18	0.01	8.35	9.31	7.75	10.66	1	0.65	1.31
Canada	42	23	0.02	7.35	8.39	6.44	10.32	0	0.60	1.41
Denmark	653	278	(0.00)	6.63	7.60	6.20	10.64	0	0.84	1.50
Estonia	21	20	0.03	7.19	7.22	6.91	9.54	0	0.83	1.10
Finland	378	108	(0.01)	7.34	8.31	7.02	10.11	0	0.88	1.36
France	1,359	386	(0.04)	7.84	8.90	7.68	10.39	0	0.61	1.16
Germany	1,659	579	(0.05)	7.45	8.37	7.41	10.52	0	0.65	1.17
Italy	803	372	(0.03)	6.88	7.76	7.04	10.29	0	0.51	0.90
Luxembourg	139	65	(0.03)	7.76	8.50	7.59	10.17	1	0.65	1.17
Netherlands	624	159	(0.02)	7.32	8.40	7.03	10.51	1	0.69	1.24
Netherlands Antilles	22	6	0.03	6.99	8.67	7.02	10.10	1	0.61	1.20
Norway	203	86	(0.00)	7.39	8.33	7.14	10.56	0	0.82	1.52
Poland	43	28	0.00	6.83	7.26	7.81	11.01	1	0.50	0.58
Portugal	67	37	0.02	6.88	7.93	7.71	9.00	0	0.58	1.02
Singapore	21	12	0.10	6.19	7.92	5.76	10.20	1	0.53	1.34
South Africa	30	11	0.00	7.69	8.78	7.64	10.23	0	0.70	1.47
Spain	577	297	(0.02)	6.99	7.99	7.47	9.69	0	0.47	1.03
Sweden	1,522	622	(0.01)	6.88	7.87	6.44	10.48	0	0.92	1.53
Switzerland	714	204	(0.01)	7.08	8.35	7.02	10.63	1	0.65	1.19
Worldwide										
Greece	51	36	(0.06)	6.54	6.97	7.20	10.88	1	0.47	0.43
India	53	23	(0.01)	7.45	9.01	8.19	10.25	1	0.69	1.41
Ireland	85	42	0.03	7.59	8.73	8.29	10.08	1	0.64	1.36
Japan	1,104	372	(0.04)	7.97	8.43	7.86	11.81	0	0.74	1.34
South Korea	90	45	(0.00)	8.01	8.47	7.78	12.54	0	0.58	1.14
Taiwan	29	13	0.07	6.83	7.83	5.77	10.74	1	0.65	1.26
United Kingdom	1,148	470	(0.00)	8.07	9.03	7.75	10.50	0	0.65	1.34
United States	2,909	802	(0.01)	7.77	8.81	7.16	10.48	0	0.67	1.29
			. ,							

Panel C reports means of variables grouped by parent country. N is the number of observations in which the given country is the parent country. # parents reports the number of parents domiciled in the given country that have subsidiaries in the sample. C is the family-level tax incentive measure developed by Huizinga and Laeven (2008). Log(Pretax income) is the natural logarithm of profit before income tax expense (in thousands of dollars). Log(Labor costs) is the natural logarithm of the compensation expense (in thousands of dollars) of the subsidiary. Log(Tangible fixed assets) is the natural logarithm of the tangible fixed assets (in thousands of dollars) of the subsidiary. Log(Value Added) is the natural logarithm of value added in 2006 in the subsidiary's country (in millions of U.S. dollars). *NOCFC*=1 if the country does not have controlled foreign corporation rules; 0 otherwise. Stability and Rule of law are indexes running from -2.5 to 2.5 from the Worldwide Governance Indicators (Kaufmann, et al., 2008). Stability is designed to capture "perceptions of the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means, including domestic violence and terrorism." Rule of law is designed to capture "the extent to which agents have confidence in and abide by the rules of society, and in particular the quality of contract enforcement, the police, and the courts, as well as the likelihood of crime and violence."

Parent country	Z	% All	BELGIUM	DENMARK	FRANCE	GERMANY	ITALY	JAPAN	NETHERLANDS	SPAIN	SWEDEN	SWITZERLAND	UK	US
Subsidiary country	15,546		573	653	1,359	1,659	803	1,104	624	577	1,522	714	1,148	2,909
AUSTRIA	204	1	0	1	1	3	0	1	1	0	1	1	1	1
BELGIUM	871	6	31	3	8	3	2	3	11	1	3	4	4	7
BULGARIA	102	1	1	0	1	1	0	0	0	0	0	1	0	0
CROATIA	137	1	1	1	1	1	1	0	1	1	0	1	1	1
CZECH REPUBLIC	579	4	3	3	3	6	2	3	4	2	2	5	4	4
DENMARK	484	3	1	18	2	2	0	1	3	-	5	2	2	3
ESTONIA	227	1	0	2	1	1	-	0	1	0	5	1	1	1
FINLAND	484	3	1	5	1	1	1	1	3	-	11	2	2	3
FRANCE	1,883	12	21	8	23	12	15	9	9	10	6	16	13	13
GERMANY	1,434	9	5	6	6	19	6	13	9	3	4	11	9	10
HUNGARY	200	1	1	2	2	2	1	1	3	0	1	1	1	1
ITALY	1,193	8	4	4	8	5	34	5	8	7	3	11	5	8
JAPAN	261	2	0	-	0	0	-	20	0	-	0	0	0	1
NETHERLANDS	311	2	2	1	2	2	1	3	4	-	1	2	2	3
NORWAY	288	2	1	4	1	1	0	0	2	-	5	1	2	1
POLAND	842	5	6	6	5	10	4	3	6	3	6	6	4	5
PORTUGAL	505	3	2	1	4	3	3	2	3	21	1	3	3	2
ROMANIA	193	1	1	0	1	2	3	1	1	1	0	2	1	1
SLOVAKIA	215	1	2	1	2	2	1	1	2	-	0	1	1	1
SOUTH KOREA	238	2	1	1	1	1	0	4	1	-	0	2	1	2
SPAIN	1,542	10	6	4	11	11	14	7	9	44	4	9	9	9
SWEDEN	1,167	8	3	20	4	2	3	3	5	1	33	6	4	5
UNITED KINGDOM	2,040	13	7	7	10	9	7	18	13	6	6	11	30	17

Panel D – Sample distribution across subsidiary countries

This table reports the distribution of observations across subsidiary countries. N reports the number of observations in each subsidiary country. The top row reports the number of observations by parent country. Parent countries with fewer than 500 observations are not included. Each cell reports the percentage of the parent country's observations that are in each subsidiary country. For example, in the full sample, 1% of observations are in Austria and 6% are in Belgium, while fewer than 0.5% of the subsidiaries of Belgian parents are in Austria and 31% of them are in Belgium. - indicates that there are zero observations in the cell. A "0" indicates that the percentage in that cell is less than 0.5, but greater than 0.

	Prediction	(1)	(2)	(3)
INTERCEPT		-0.93**	-0.77**	-0.89**
		(0.07)	(0.08)	(0.08)
TT			-0.13**	-0.13**
			(0.02)	(0.02)
С	-	-0.94**	-0.48**	-0.42**
		(0.09)	(0.13)	(0.13)
TT^*C	-		-0.84**	-0.75**
			(0.17)	(0.17)
LOGASSETS	+	0.23**	0.23**	0.23**
		(0.01)	(0.01)	(0.01)
LOGCOMP	+	0.67**	0.67**	0.67**
		(0.01)	(0.01)	(0.01)
LOGVA	+	0.10**	0.10**	0.09**
		(0.00)	(0.00)	(0.00)
STABILITY	+			0.31**
				(0.03)
LAW	+			-0.09**
				(0.02)
Fixed effects		Industry	Industry	Industry
N		15,008	15,009	15,008
Adj Rsquare		0.79	0.79	0.79

Table 3 – Main results

$(1) LogPLBT_{i} = \beta_{0} + \beta_{1}TT_{i} + \beta_{2}C_{i} + \beta_{3}TT_{i} * C_{i} + \beta_{4}LogASSETS_{i} + \beta_{5}LogCOMP_{i} + \beta_{6}LogVA_{i} + \beta_{7}STABILITY_{i} + \beta_{8}LAW_{i} + \varepsilon_{i}$

This table reports OLS estimates of (1). *LogPLBT* is the natural logarithm of profit before income tax expense (in thousands of dollars). *TT* is an indicator variable equal to 1 if the subsidiary is owned by a territorial parent; 0 otherwise. *C* is the family-level tax incentive measure developed by Huizinga and Laeven (2008). *LOGASSETS* is the natural logarithm of tangible fixed assets reported by the subsidiary in 2006. *LOGCOMP* is the natural logarithm of labor compensation paid by the subsidiary in 2006. *LOGVA* is the natural logarithm of value added in 2006 in the subsidiary's country (in millions of U.S. dollars). *STABILITY* and *LAW* are indexes running from -2.5 to 2.5 from the Worldwide Governance Indicators (Kaufmann, et al., 2008). *STABILITY* is designed to capture "perceptions of the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means, including domestic violence and terrorism." *LAW* is designed to capture "the extent to which agents have confidence in and abide by the rules of society, and in particular the quality of contract enforcement, the police, and the courts, as well as the likelihood of crime and violence." Model (1) pools all types of subsidiaries by excluding the indicator variables and interaction terms from the model.

Standard errors corrected for clustering at the parent level are reported in parentheses below the estimate. * and ** indicate statistical significance at the 5%, and 1% levels, respectively.

	Prediction	(1)	(2)	(3)
INTERCEPT		-0.89**	-0.96**	-0.88**
TT		-0.13**		-0.09**
NOCFC			-0.19**	
TT*NOCFC				-0.15**
С	-	-0.42**	-0.58**	-0.41**
TT*C	-	-0.75**		-0.56**
NOCFC*C	-		-0.91**	
TT*NOCFC*C	-			-0.42
LOGASSETS		0.23**	0.23**	0.23**
LOGCOMP		0.67**	0.68**	0.67**
LOGVA		0.09**	0.10**	0.09**
STABILITY		0.31**	0.31**	0.31**
LAW		-0.09**	-0.10**	-0.10**
Fixed effects		Industry	Industry	Industry
N		15,008	15,010	15,011
Adj Rsquare		0.79	0.79	0.79

Table 4 - Robustness check, CFC rules

 $(1b) \ LogPLBT_{i} = \beta_{0} + \beta_{1}TT_{i} + \beta_{2}NOCFC_{i} + \beta_{3}TT_{i} * NOCFC_{i} + +\beta_{4}C_{i} + \beta_{3}TT_{i} * C_{i} + \beta_{5}NOCFC_{i} * C_{i} + \beta_{6}TT_{i} * NOCFC_{i} * C_{i} + \beta_{7}LogASSETS_{i} + \beta_{8}LogCOMP_{i} + \beta_{9}LogVA_{i} + \beta_{10}STABILITY_{i} + \beta_{11}LAW_{i} + \varepsilon_{i}$

This table reports OLS estimates of versions of (1b). *LogPLBT* is the natural logarithm of profit before income tax expense (in thousands of dollars). *TT* is an indicator variable equal to 1 if the subsidiary is owned by a territorial parent; 0 otherwise. *C* is the family-level tax incentive measure developed by Huizinga and Laeven (2008). *NOCFC*=1 if the country does not have controlled foreign corporation rules; 0 otherwise. *LOGASSETS* is the natural logarithm of tangible fixed assets reported by the subsidiary in 2006. *LOGCOMP* is the natural logarithm of labor compensation paid by the subsidiary in 2006. *LOGVA* is the natural logarithm of value added in 2006 in the subsidiary's country (in millions of U.S. dollars). *STABILITY* and *LAW* are indexes running from -2.5 to 2.5 from the Worldwide Governance Indicators (Kaufmann, et al., 2008). *STABILITY* is designed to capture "perceptions of the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means, including domestic violence and terrorism." *LAW* is designed to capture "the extent to which agents have confidence in and abide by the rules of society, and in particular the quality of contract enforcement, the police, and the courts, as well as the likelihood of crime and violence." Model (1) pools all types of subsidiaries by excluding the indicator variables and interaction terms from the model.

Standard errors corrected for clustering at the parent level are not reported.

* and ** indicate statistical significance at the 5%, and 1% levels, respectively.

Table 5 – Regressions by parent country

	Full sample	FRANCE (T)	GERMANY (T)	ITALY (T)	JAPAN (W)	NETHERLANDS (T)	SWEDEN (T)	SWITZERLAND (T)	UNITED KINGDOM (W	UNITED STATES (W)
INITERCEPT	-1.05**	-1.01**	-0 74**	-0.36	-0 70*	-0.24	-1 09**	-0.49	-0.81**	-0.37
INTERCEI I	(0.07)	(0.28)	(0.22)	(0.49)	(0.31)	(0.45)	(0.23)	(0.36)	(0.31)	(0.19)
С	-0.82**	-1.41**	-0.59*	-1.58**	0.41	-1.95**	-1.49**	-2.04**	-0.59	-0.26
	(0.09)	(0.38)	(0.30)	(0.60)	(0.29)	(0.48)	(0.43)	(0.38)	(0.40)	(0.18)
LOGASSETS	0.23**	0.22**	0.25**	0.21**	0.32**	0.17**	0.19**	0.22**	0.24**	0.20**
	(0.01)	(0.02)	(0.02)	(0.02)	(0.02)	(0.03)	(0.02)	(0.02)	(0.02)	(0.01)
LOGCOMP	0.68**	0.69**	0.64**	0.71**	0.48**	0.65**	0.73**	0.67**	0.69**	0.70**
	(0.01)	(0.03)	(0.03)	(0.04)	(0.03)	(0.05)	(0.03)	(0.04)	(0.03)	(0.02)
LOGVA	0.10**	0.10**	0.09**	0.03	0.15**	0.07**	0.07**	0.04	0.06**	0.05**
	(0.00)	(0.02)	(0.01)	(0.04)	(0.01)	(0.03)	(0.02)	(0.02)	(0.02)	(0.01)
STABILITY	0.31**	-0.15	0.30**	0.43*	0.22	-0.17	0.29*	0.21	0.39**	0.33**
	(0.03)	(0.12)	(0.10)	(0.18)	(0.14)	(0.15)	(0.12)	(0.14)	(0.13)	(0.07)
LAW	-0.10**	0.11	-0.16**	-0.11	0.13	0.21*	0.05	-0.11	-0.15*	-0.12**
	(0.02)	(0.07)	(0.06)	(0.08)	(0.08)	(0.09)	(0.08)	(0.09)	(0.07)	(0.04)
Fixed effects	Industry	Industry	Industry	Industry	Industry	Industry	Industry	Industry	Industry	Industry
Ν	15,010	1,337	1,643	763	1,088	617	1,316	711	1,092	2,881
Adj Rsquare	0.79	0.80	0.80	0.76	0.77	0.76	0.80	0.78	0.83	0.79

 $(1d) LogPLBT_i = \beta_0 + \beta_1 C_i + \beta_2 LogASSETS_i + \beta_3 LogCOMP_i + \beta_4 LogVA_i + \beta_5 STABILITY_i + \beta_6 LAW_i + \varepsilon_i$

This table reports OLS estimates of (1d) on subsamples of the parent county in the respective column. *LogPLBT* is the natural logarithm of profit before income tax expense (in thousands of dollars). *TT* is an indicator variable equal to 1 if the subsidiary is owned by a territorial parent; 0 otherwise. *C* is the family-level tax incentive measure developed by Huizinga and Laeven (2008). *LOGASSETS* is the natural logarithm of tangible fixed assets reported by the subsidiary in 2006. *LOGCOMP* is the natural logarithm of labor compensation paid by the subsidiary in 2006. *LOGVA* is the natural logarithm of value added in 2006 in the subsidiary's country (in millions of U.S. dollars). *STABILITY* and *LAW* are indexes running from -2.5 to 2.5 from the Worldwide Governance Indicators (Kaufmann, et al., 2008). *STABILITY* is designed to capture "perceptions of the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means, including domestic violence and terrorism." *LAW* is designed to capture "the extent to which agents have confidence in and abide by the rules of society, and in particular the quality of contract enforcement, the police, and the courts, as well as the likelihood of crime and violence." *STABILITY* is designed to capture "perceptions of the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means, including domestic violence and terrorism." *LAW* is designed to capture "the extent to which agents have confidence in and abide by the rules of society, and in particular the quality of contract enforcement, will be destabilized or overthrown by unconstitutional or violent means, including domestic violence and terrorism." *LAW* is designed to capture "the extent to which agents have confidence in and abide by the rules of society, and in particular the quality of contract enforcement will be destabilized or overthrown by unconstitutional or violent means, including domestic violence and terrorism." *LAW* is d

(W) after the country name indicates the country has a worldwide tax system. (T) indicates that the country has a territorial tax system.

Standard errors corrected for clustering at the parent level are reported in parentheses below the estimate. * and ** indicate statistical significance at the 5%, and 1% levels, respectively.

	Prediction	Baseline	Above the median	Top quintile	Bottom quintile
INTERCEPT		-0.92**	-0.95**	-0.94**	-0.73**
TT		-0.13**	-0.15**	-0.14**	-0.10**
С	-	-0.42**	0.05	-0.11	-0.62**
TT*C	-	-0.73**	-1.20**	-0.97**	-0.38
SPLITVAR			0.21**	0.21**	-0.21**
TT*SPLITVAR	0		0.05	0.06	-0.06
C*SPLITVAR	-		-0.98**	-0.79**	0.53*
TT*C*SPLITVAR	+		1.21**	0.89**	-0.62
LOGASSETS		0.23**	0.23**	0.23**	0.23**
LOGCOMP		0.68**	0.67**	0.67**	0.67**
LOGVA		0.10**	0.09**	0.09**	0.09**
STABILITY		0.30**	0.30**	0.29**	0.30**
LAW		-0.09**	-0.08**	-0.08**	-0.08**
Fixed effects		Industry	Industry	Industry	Industry
N		14,610	14,610	14,612	14,609
Adj Rsquare		0.79	0.79	0.79	0.79
<u>F-tests</u>					
C*SPLITVAR + TT*C*SPLITVAR <> 0			1.03	0.20	0.16
			(0.31)	(0.65)	(0.69)
$TT^*C + TT^*C^*SPLITVAR <> 0$			0.00	0.08	17.29**
			(0.95)	(0.78)	(0.00)

Table 6 – The effect of foreign reinvestment opportunities

 $\begin{aligned} (1f) \ LogPLBT_{i} &= \beta_{0} + \beta_{1}TT_{i} + \beta_{2}C_{i} + \beta_{3}TT_{i} * C_{i} + \beta_{4}SPLITVAR_{i} + \beta_{5}C_{i} * SPLITVAR_{i} + \beta_{6}TT_{i} * C_{i} * SPLITVAR_{i_{i}} \\ &+ \beta_{7}LogASSETS_{i} + \beta_{8}LogCOMP_{i} + \beta_{9}LogVA_{i} + \beta_{10}STABILITY_{i} + \beta_{11}LAW_{i} + \varepsilon_{i} \end{aligned}$

This table reports OLS estimates of (1f). *LogPLBT* is the natural logarithm of profit before income tax expense (in thousands of dollars). *TT* is an indicator variable equal to 1 if the subsidiary is owned by a territorial parent; 0 otherwise. *C* is the family-level tax incentive measure developed by Huizinga and Laeven (2008). *LOGASSETS* is the natural logarithm of tangible fixed assets reported by the subsidiary in 2006. *LOGCOMP* is the natural logarithm of labor compensation paid by the subsidiary in 2006. *LOGVA* is the natural logarithm of value added in 2006 in the subsidiary's country (in millions of U.S. dollars). *STABILITY* and *LAW* are indexes running from -2.5 to 2.5 from the Worldwide Governance Indicators (Kaufmann, et al., 2008). *STABILITY* is designed to capture "perceptions of the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means, including domestic violence and terrorism." *LAW* is designed to capture "the extent to which agents have confidence in and abide by the rules of society, and in particular the quality of contract enforcement, the police, and the courts, as well as the likelihood of crime and violence." *SPLITVAR* assumes the value of the indicator variable which splits the sample at the point in the column heading, where observations have been sorted based on reinvestment opportunities.

Standard errors corrected for clustering at the parent level are not reported.

* and ** indicate statistical significance at the 5%, and 1% levels, respectively.

p-values for F-tests are in parentheses below the F-statistic.

Table 7 - The effect of domestic cash constraints

	Prediction	Baseline	Below the mediar	Bottom quintile	Top quintile
INTERCEPT		-1.02**	-1.05**	-1.05**	-1.05**
TT		-0.15**	-0.23**	-0.19**	-0.10**
С	-	0.01	0.09	-0.09	-0.30
TT*C	-	-1.29**	-1.69**	-1.29**	-0.86**
SPLITVAR			0.02	-0.02	0.06
TT*SPLITVAR	0		0.17**	0.21**	-0.25**
C*SPLITVAR	-		-0.49	-0.25	0.73
TT*C*SPLITVAR	+		1.21**	1.03	-1.30*
LOGASSETS		0.25**	0.25**	0.25**	0.25**
LOGCOMP		0.66**	0.66**	0.66**	0.66**
LOGVA		0.11**	0.11**	0.11**	0.11**
STABILITY		0.31**	0.31**	0.31**	0.30**
LAW		-0.07**	-0.07**	-0.07**	-0.07**
Fixed effects		Industry	Industry	Industry	Indust ry
N		10,186	10,189	10,187	10,188
Adj Rsquare		0.80	0.80	0.80	0.80
<u>F-tests</u>					
C*SPLITVAR + TT*C*SPLITVAR <> 0			6.82**	4.59*	3.41
			(0.01)	(0.03)	(0.06)
$TT^*C + TT^*C^*SPLITVAR <> 0$			2.35	0.43	19.00**
			(0.13)	(0.51)	(0.00)

This table reports OLS estimates of (1f). *LogPLBT* is the natural logarithm of profit before income tax expense (in thousands of dollars). *TT* is an indicator variable equal to 1 if the subsidiary is owned by a territorial parent; 0 otherwise. *C* is the family-level tax incentive measure developed by Huizinga and Laeven (2008). *LOGASSETS* is the natural logarithm of tangible fixed assets reported by the subsidiary in 2006. *LOGCOMP* is the natural logarithm of labor compensation paid by the subsidiary in 2006. *LOGVA* is the natural logarithm of value added in 2006 in the subsidiary's country (in millions of U.S. dollars). *STABILITY* and *LAW* are indexes running from -2.5 to 2.5 from the Worldwide Governance Indicators (Kaufmann, et al., 2008). *STABILITY* is designed to capture "perceptions of the likelihood that the government will be destabilized or overthrown by unconstitutional or violent means, including domestic violence and terrorism." *LAW* is designed to capture "the extent to which agents have confidence in and abide by the rules of society, and in particular the quality of contract enforcement, the police, and the courts, as well as the likelihood of crime and violence." *SPLITVAR* assumes the value of the indicator variable which splits the sample at the point in the column heading, where observations have been sorted based on the domestic leverage of the parent.

Standard errors corrected for clustering at the parent level are not reported.

 \ast and $\ast\ast$ indicate statistical significance at the 5%, and 1% levels, respectively.

p-values for F-tests are in parentheses below the F-statistic.

							HOME TAX		
							EXCLUDE		
			EFFE	CTIVE			FULLY		
	WITHH	OLDING	WITHH	OLDING	FULL S	SAMPLE	EXEMPT	WW ONLY	U.S. ONL
INTERCEPT	-0.52**	-0.27**	-0.52**	-0.27**	-0.51**	-0.27**	-0.24**	-0.10	0.12
TT		-0.23**		-0.23**		-0.22**	-0.17**		
RATE	1.77**	0.99**	2.54**	1.38**	1.40**	0.44	0.45*	0.53*	0.99**
TT*RATE		0.10		0.19		-2.05	-4.97*		
NI	0.63**	0.64**	0.63**	0.64**	0.61**	0.63**	0.60**	0.45**	0.18*
LOGASSETS	-0.20**	-0.21**	-0.20**	-0.21**	-0.20**	-0.21**	-0.20**	-0.20**	-0.22**
STDEVNI	0.40**	0.38**	0.40**	0.38**	0.38**	0.38**	0.19**	0.17**	0.07*
CAPEX	-1.83**	-1.80**	-1.84**	-1.81**	-1.87**	-1.82**	-1.99**	-1.80**	-0.93**
LEV	-0.02	-0.02	-0.02	-0.02	-0.02*	-0.02	-0.06**	-0.06*	-0.00
RD	-0.44**	-0.48**	-0.44**	-0.48**	-0.45**	-0.49**	-0.61**	-0.75**	-0.50**
Industry fixed effects	Y	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ
N	15,594	15,594	15,595	15,594	15,601	15,595	11,239	6,387	3,697
Adj Rsquare	0.16	0.17	0.16	0.17	0.16	0.17	0.16	0.16	0.18
F-test		6.01*		5.75*		1.27	4.18*		
TT*RATE + RATE <>	· 0	(0.01)		(0.02)		(0.26)	(0.04)		

Table 8 – Foreign cash holdings

$\begin{aligned} LogCASH_{i} &= \beta_{0} + \beta_{1}TT_{i} + \beta_{2}RATE_{i} + \beta_{3}TT_{i} * RATE_{i} \\ &+ \beta_{4}LogNI_{i} + \beta_{5}LogASSETS_{i} + \beta_{6}StdevNI_{i} + \beta_{7}CAPEX_{i} + \beta_{7}LEV_{i} + \beta_{8}RD_{i} + \varepsilon_{i} \end{aligned}$

This table reports OLS estimates of (2). LogCASH the natural logarithm of (cash/total assets) reported on the unconsolidated financial statements of the subsidiary. *RATE* takes on the definition in the column heading. WITHHOLDING is the statutory withholding rate paid on dividends from a wholly-owned subsidiary to its parent. EFFECTIVE WITHHOLDING is the amount of withholding tax rate expressed as a percentage of the pretax income of the subsidiary rather than as the percentage of the dividend (calculated as $w_s(1 - \tau_s)$, where τ_s is the statutory corporate income tax rate and w_s is the withholding tax rate. HOME TAX is the tax due in the parent's home country when the dividend is received and is expressed as a percentage of the pretax income of the subsidiary. It is calculated as $\max(0, \tau_P - (\tau_S - w_S(1 - \tau_S)))$ for worldwide firms and $0.05 * \tau_P * (\tau_S - w_S(1 - \tau_S))$ for firms in territorial countries that exempt 95% of foreign dividends, where τ_P is the statutory corporate income tax rate in the parent country. *TT* is an indicator variable equal to 1 if the parent is domiciled in a territorial country that taxes 5% of foreign dividends; 0 otherwise. *TT_0* is an indicator variable equal to 1 if the parent is domiciled financial statements of the subsidiary. *LogASSETS* is the natural logarithm of (net income/total assets) reported on the unconsolidated financial statements of the subsidiary. *LogASSETS* is calculated assets) reported on the unconsolidated financial statements of the subsidiary. *LeV* is ((current liabilities + long-term debt)/total assets) reported on the unconsolidated financial statements of the subsidiary. *LEV* is (intangible fixed assets) reported on the unconsolidated financial statements of the subsidiary. *RD* is (intangible fixed assets) reported on the unconsolidated financial statements of the subsidiary. *RD* is (intangible fixed assets/total assets) reported on the unconsolidated financial statements of the subsidiary. *RD* is (intangible fixed assets/total as

Standard errors corrected for clustering at the parent level are not reported.

 \ast and $\ast\ast$ indicate statistical significance at the 5%, and 1% levels, respectively.

p-values for F-tests are in parentheses below the F-statistic.

(2)

Appendix A – Calculation of the tax variable, $C_i = \frac{1}{(1-\tau_i)} \frac{\sum_{k\neq i}^n \frac{B_k}{1-\tau_k} (\tau_i - \tau_k)}{\sum_{k=1}^n \frac{B_k}{1-\tau_k}}$

The following scenarios illustrate the calculation of C, its variation with its inputs, and its variation from simple rate differences. The three scenarios are identical except for the distribution of revenue across subsidiaries and assume that the parent is domiciled in the same country as Subsidiary 3 (i.e., has a 20% tax rate). Rate difference is the subsidiary's tax rate minus the parent's tax rate.

Scenario 1

				Rate
Subsidiary	Tax rate	Revenue	С	difference
1	0%	10	(0.19) *	(0.20)
2	10%	100	(0.12)	(0.10)
3	20%	50	0.01	-
4	30%	80	0.15	0.10
Mean	15%	60	(0.04)	(0.05)

Scenario 2

				Rate
Subsidiary	Tax rate	Revenue	С	difference
1	0%	10	(0.22)	(0.20)
2	10%	50	(0.15)	(0.10)
3	20%	80	(0.03)	-
4	30%	100	0.11	0.10
Mean	15%	60	(0.07)	(0.05)

Scenario 3

				Rate
Subsidiary	Tax rate	Revenue	С	difference
1	0%	80	(0.17)	(0.20)
2	10%	10	(0.06)	(0.10)
3	20%	100	0.04	-
4	30%	50	0.19	0.10
Mean	15%	60	0.00	(0.05)

$$* C_1 = \frac{1}{(1-0)} \frac{\frac{100}{1-0.1}(0-0.1) + \frac{50}{1-0.2}(0-0.2) + \frac{80}{1-0.3}(0-0.3)}{\frac{10}{1-0} + \frac{100}{1-0.1} + \frac{50}{1-0.2} + \frac{80}{1-0.3}} = -0.19$$

OXFORD UNIVERSITY CENTRE FOR BUSINESS TAXATION WORKING PAPER SERIES

WP12/05 LI LIU *INCOME TAXATION AND BUSINESS INCORPORATION:* EVIDENCE FROM THE EARLY TWENTIETH CENTURY

WP12/04 Shafik Hebous and Vilen Lipatov *A Journey from A Corruption Port to a Tax Haven*

WP12/03 NEILS JOHANNESEN *Strategic line drawing between debt and equity*

WP12/02 CHONGYANG CHEN, ZHONGLAN DAI, DOUGLAS A. Shackelford and Harold H. Zhang, *Does Financial Constraint Affect Shareholder Taxes and the Cost of Equity Capital?*

WP12/01 STEPHEN R. BOND AND IREM GUCERI, *Trends in UK BERD* After the Introduction of R&D Tax Credits

WP11/23 KRAUTHEIM, SEBASTIAN AND TIM SCHMIDT-EISENLOHR Wages and International Tax Competition

WP11/22 HAUFLER, ANDREAS, PEHR-JOHAN NÖRBACK AND LARS Persson *Entrepreneurial innovation and taxation*

WP11/21 MANCINI, RAFFAELE, PAOLO M. PANTEGHINI AND MARIA LAURA Parisi *Debt-Shifting in Europe*

WP11/20 Xing, Jing *Does tax structure affect economic growth? Empirical evidence from OECD countries*

WP11/19 FREEDMAN, JUDITH *Responsive Regulation, Risk and Rules: Applying the theory to tax practice*

WP11/18 DEVEREUX, MICHAEL P. AND SIMON LORETZ HOW WOULD EU CORPORATE TAX REFORM AFFECT US INVESTMENT IN EUROPE?

WP11/17 VELLA, JOHN, CLEMENS FUEST AND TIM SCHMIDT-EISENLOHR Response on EU proposal for a Financial Transaction Tax

WP11/16 LORETZ, SIMON AND SOCRATES MOKKAS *Evidence for Profit-shifting with tax sensitive capital stocks*

WP11/15 WEISENBACH, DAVID A. CARBON TAXATION IN THE EU: EXPANDING EU CARBON PRICE

WP11/14 BAUER, CHRISTIAN, DAVIES, RONALD B. AND ANDREAS HAUER Economic Integration and the Optimal Corporate Tax Structure with Heterogeneous Firms

WP11/13 ENGLISCH, JOACHIM NATIONAL MEASURES TO COUNTER TAX Avoidance under the Merger Directive

WP11/12 DE LA FERIA, RITA AND CLEMENS FUEST *CLOSER TO AN INTERNAL MARKET? THE ECONOMIC EFFECTS OF EU TAX JURISPRUDENCE*

WP11/11 ENGLISCH, JOACHIM EU PERSPECTIVE ON VAT EXEMPTIONS

WP11/10 RIEDEL, NADINE AND HANNAH SCHILDBERG-HÖRISCH Asymmetric Obligations

WP11/09 BÖHM, TOBIAS AND NADINE RIEDEL *ON SELECTION INTO PUBLIC CIVIL SERVICE*

WP11/08 AUERBACH, ALAN J. AND MICHAEL P. DEVEREUX CONSUMPTION AND CASH-FLOW TAXES IN AN INTERNATIONAL SETTING

WP11/07 BECKER, JOHANNES AND CLEMENS FUEST *TAX COMPETITION: M&A VERSUS GREENFIELD INVESTMENT*

WP11/06 RIEDEL, NADINE *TAXING MULTINATIONALS UNDER UNION WAGE BARGAINING*

WP11/05 LIU, LI AND ROSANNE ALTSHULER *MEASURING THE BURDEN OF THE CORPORATE INCOME TAX UNDER IMPERFECT COMPETITION*

WP11/04 BECKER, JOHANNES AND CLEMENS FUEST *THE TAXATION OF* Foreign Profits - The Old View, the New View, and a Pragmatic View

WP11/03 Konrad, Kai *Search Costs and Corporate Income Tax Competition*

WP11/02 HELLERSTEIN, WALTER COMPARING THE TREATMENT OF CHARITIES UNDER VALUE ADDED TAXES AND RETAIL SALES TAXES

WP11/01 DHARMAPALA, DHAMMIKA AND NADINE RIEDEL *EARNINGS* Shocks and Tax-Motivated Income-Shifting: Evidence from European Multinationals WP10/23 SCHMIDT-EISENLOHR, TIM *TOWARDS A THEORY OF TRADE FINANCE*

WP10/22 FREEDMAN, JUDITH AND JOHN VELLA *HMRC's Management* of the UK Tax System: The Boundaries of Legitimate Discretion

WP10/21 DE LA FERIA, RITA *Reverberation of Legal Principles: Further Thoughts on the Development of an EU Principle of Prohibition of Abuse of Law*

WP10/20 HAUER, ANDREAS AND FRANK STÄHLER *TAX COMPETITION IN A SIMPLE MODEL WITH HETEROGENEOUS FIRMS: HOW LARGER MARKETS REDUCE PROFIT TAXES*

WP10/19 CNOSSEN, SIJBREN *IMPROVING THE VAT TREATMENT OF* EXEMPT IMMOVABLE PROPERTY IN THE EUROPEAN UNION

WP10/18 GRUBERT, HARRY AND RICHARD KREVER VAT AND FINANCIAL SUPPLIES: WHAT SHOULD BE TAXED?

WP10/17 GENDRON, PIERRE-PASCAL VAT TREATMENT OF PUBLIC SECTOR BODIES: THE CANADIAN MODEL

WP10/16 NIEPMANN, FRIEDERIKE AND TIM SCHMIDT-EISENLOHR BANK BAILOUTS, INTERNATIONAL LINKAGES AND COOPERATION

WP10/15 BOND, STEPHEN AND JING XING *CORPORATE TAXATION AND CAPITAL ACCUMULATION*

WP10/14 LOCKWOOD, BEN HOW SHOULD FINANCIAL INTERMEDIATION SERVICES BE TAXED?

WP10/13 BECKER, JOHANNES, FUEST, CLEMENS AND NADINE RIEDEL CORPORATE TAX EFFECTS ON THE QUALITY AND QUANTITY OF FDI

WP10/12 FUEST, CLEMENS AND NADINE RIEDEL *TAX EVASION AND TAX* Avoidance in Developing Countries: The Role of International Profit Shifting

WP10/11 WILDASIN, DAVID E. *STATE CORPORATION INCOME TAXATION: AN ECONOMIC PERSPECTIVE ON NEXUS*

WP10/10 BECKER, JOHANNES AND MARCO RUNKEL *CORPORATE TAX REGIME AND INTERNATIONAL ALLOCATION OF OWNERSHIP* WP10/09 SIMPSON, HELEN HOW DO FIRMS' OUTWARD FDI STRATEGIES RELATE TO THEIR ACTIVITY AT HOME? EMPIRICAL EVIDENCE FOR THE UK

WP10/08 VOGET, JOHANNES, *Headquarter Relocations and International Taxation*

WP10/07 DEVEREUX, MICHAEL P. AND SIMON LORETZ *EVALUATING* Neutrality Properties of Corporate Tax Reforms

WP10/06 DAVIES, RONALD B. AND LOURENÇO S. PAZ, *TARIFS VERSUS VAT* IN THE PRESENCE OF HETEROGENEOUS FIRMS AND AN INFORMAL SECTOR

WP10/05 FINKE, KATHARINA, HECKEMEYER, JOST H., REISTER TIMO AND Christoph Spengel *Impact of Tax Rate Cut Cum Base Broadening Reforms on Heterogeneous Firms - Learning from the German Tax Reform 2008*

WP10/04 KOH, HYUN-JU AND NADINE RIEDEL *DO GOVERNMENTS TAX AGGLOMERATION RENTS?*

WP10/03 DISCHINGER, MATTHIAS AND NADINE RIEDEL *THE ROLE OF* HEADQUARTERS IN MULTINATIONAL PROFIT SHIFTING STRATEGIES

WP10/02 VRIJBURG, HENDRIK AND RUUD A. DE MOOIJ *ENHANCED COOPERATION IN AN ASYMMETRIC MODEL OF TAX COMPETITION*

WP10/01 BETTENDORF, LEON, VAN DER HORST *Albert, de Mooij, Ruud* A. and Hendrik Vrijburg, Corporate tax consolidation and enhanced cooperation in the European Union

WP09/32 BETTENDORF, LEON, DEVEREUX, MICHAEL P., VAN DER HORST, Albert, Loretz, Simon and Ruud A. de Mooij *Corporate tax harmonization in the EU*

WP09/31 KARKINSKY, TOM AND NADINE RIEDEL *CORPORATE TAXATION* AND THE CHOICE OF PATENT LOCATION WITHIN MULTINATIONAL FIRMS

WP09/30 BECKER, JOHANNES AND CLEMENS FUEST *Transfer Pricing* Policy and the Intensity of Tax Rate Competition