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ABSTRACT 

 
This paper examines the role of environmental taxes in reducing 
emission output. Using unique satellite data to observe levels of 
nitrogen dioxide (NO2), we leverage an emission tax introduction in 
2013 in the Autonomous Community Valenciana. We find that this 
environmental tax reduced NO2 levels by 1.2%. While the effect does 
not depend on prevalence of dirty versus clean firms in an area, we 
find that the NO2 burden is reduced more substantially in areas with 
a higher density of firms and in areas with innovative and large firms. 
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1 Introduction 

Rising sea levels, more frequent and intense climate-induced extreme events, and 

environmental damage show that there is a price to be paid on the emission of greenhouse gases 

such as carbon dioxide (CO2) or methane (IPCC, 2022). While the debate about CO2 is 

omnipresent, other anthropogenic emissions such as NOx are less discussed in public despite 

their potential harm. NOx is predominantly produced by combustion industrial production 

processes. For this reason, NOx and CO2 emissions are strongly linked and NOx is a robust 

proxy for combustion CO2 (Reuter et al., 2019; Liu et al., 2020; Hakkarainen et al., 2021). In 

addition to several negative health effects attributed to high NOx emissions such as coughing, 

wheezing, asthma, and other respiratory infections (EPA, 2022a), especially environmental 

effects can be significant when NOx levels are high. NOx interacts with water, oxygen and 

other chemicals in the atmosphere and can lead to acid rain (EPA, 2022a). This harms sensitive 

ecosystems such as lakes or forests and contributes to the nutrient pollution in coastal waters.  

While the international community was able to agree on limiting global warming and 

stopping environmental damage caused by greenhouse gases and air pollutants, the paths to 

achieving this goal and especially the distribution of associated costs and efforts for necessary 

action measures is unclear. One frequently discussed path towards reduced emissions are 

emission taxes as “their principal rationale is that they are generally an effective tool for 

meeting domestic emission mitigation commitments” and “provide a clear incentive for 

redirecting energy investment towards low-carbon technologies” (IMF, 2019). As most NOx 

emissions can be attributed to industrial emissions (EPA, 2022b), firms are often seen as driver 

of innovation in clean technology to curb emissions (e.g., Krass et al., 2013 or Brown et al., 

2022). Hence, taxing polluting firms seems to be a viable option for policy makers. However, 

empirical evidence on the effectiveness of taxes in reducing emissions is scarce. 
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In this paper, we thus examine how emission taxes on industrial NOx pollution affect 

NO2 levels, the most common NOx form. Understanding whether tax policy is effective in 

achieving this goal is important since environmental and health damages due to NOx can be 

severe while economic costs can be higher than intended (Jacob and Zerwer, 2022). In theory, 

the effect of emission taxes on emission levels appears straightforward. With an emission tax, 

firms face a new cost directly related to their emission output, which should reduce emission 

levels (Rafaty et al., 2020). This is a standard response considering Pigouvian pollution pricing 

and an adjustment of the market failure arising from pollution (Metcalf, 2019). However, since 

the price of emission taxes may be passed on by ‘dirty’ firms to ‘clean’ firms as evidenced by 

‘clean’ firms cutting investments as much as ‘dirty’ firms in response to an emission tax (Jacob 

and Zerwer, 2022), the effectiveness of an emission tax in curbing emissions is ex ante unclear. 

This is, while a net decrease of emissions following the introduction of a respective tax seems 

likely, it is unclear where and under which circumstances emissions are cut more or less. 

Prior research on emission levels and their relationship with emission taxes faces several 

data-related limitations. Due to the lack of data and presumably also lack of variation in policy, 

earlier studies analytically model the emission response (e.g., Goto, 1995, Nakata and Lamont, 

2001, Wissema and Dellink, 2007, Lu et al., 2010). Later empirical studies use emission data 

that are at the sector level or an even more aggregated level such as at country level (e.g., Davis 

and Kilian, 2011, Lin and Li, 2011 Metcalf and Stock, 2022, Best et al., 2020, Bayer and Aklin, 

2020, Pretis, 2022). As a result, there is large variation in the estimated effects, ranging from 

zero aggregate effects (e.g., Pretis, 2022) to very large effects for certain sectors or plants 

(Andersson, 2019, Rafaty et al., 2020). Moreover, studies using more granular data at the plant 

or measuring station level only approximate emissions synthetically using input factors such 

as fuel or electricity (Petrick and Wagner, 2014, Martin et al., 2014, Dussaux, 2020), cover 

only a comparably small area due to a limited number of measuring stations (Abrell et al., 2011, 
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Klemetsen et al., 2016), and are prone to uncertainties through a possible lack of 

representativity of the spatial positions of the stations given the high spatial variability of 

atmospheric constituents (Zhu et al., 2020). Plant level data also have the disadvantage that the 

data do not fully capture the entire economic activity leading to emissions. These data do not 

cover emissions from commercial traffic which also contribute to overall emissions and 

therefore should not be neglected, especially when informing the policy debate. Hence, it is 

still an open empirical question whether and to what extent emission taxes can curb emissions. 

In this paper, we overcome these challenges and examine emission levels by using 

granular data and a tax reform in a Spanish Autonomous Community. First, we use satellite 

data from the Ozone Monitoring Instrument (OMI) (Levelt et al., 2006) over the period 2009-

2016 that allow us to measure the NO2 burden at the very local level. We use data on yearly 

average tropospheric NO2 column densities on an equidistant grid layered on Spain of 0.125° 

latitude and 0.125° longitude spatial resolution (equivalent to areas of about 10 × 10 kilometers 

(km), or about 6.2 times 6.2 miles) (Boersma et al., 2011). Such satellite-based observations of 

tropospheric NO2 column densities have been extensively used to infer NOx emissions (e.g., 

Silvern et al., 2019 and references therein; Voigt et al., 2022). Second, we leverage the 

introduction of an emission tax in the Spanish region of the Valencian Community in 2013 that 

taxes the amount of SOx and NOx emitted. The Comunidad Valenciana is our treatment group 

and matched regions of the rest of Spain comprise our control group. This setting has several 

advantages. First, it is the only tax reform on NOx emissions during our sample period in Spain. 

Second, despite being local, the emission tax is economically significant contributing an 

additional €30 million in annual revenue to the local budget (Europa Press, 2012), added about 

13% to local firms’ tax bills, and triggered investment cuts (Jacob and Zerwer 2022). Third, 

the within-country setting allows us to explore differences in emission levels across Spain 

while holding general economic conditions and regulations on a national level constant.  
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In our difference-in-differences (DiD) analysis, we show that the local emission tax leads to 

a significant reduction of NO2 levels during the observed period. That is, NO2 levels in a 10 × 

10 km area located in the treatment group of the Valencian Community are cut by around 1.2% 

due to the emission tax. Given that similar emission initiatives that introduced taxes on input 

factors such as gasoline or other fuels led to a cut in CO2 emissions of 1% to 7.3% (Martin et 

al., 2014, Rafaty et al., 2020) or the fact that emission taxes reduced firm or plant level 

emissions by up to 45% (e.g., Klemetsen et al., 2016), our finding seems to be economically 

significant. However, it also indicates that when using granular data on emission output levels, 

the estimated effect is rather at the lower end of prior estimates. The finding of reduced NO2 

levels is robust to different alternative tests and estimation methods. 

In addition to the average response, we also explore the heterogeneity in the response across 

regions. The objective of these tests is twofold. First, these tests can inform policymakers which 

regions benefit most, and which benefit least from changing NOx taxes. Second, these tests 

help us assessing some of the mechanisms through which emission taxes can reduce emission 

levels. In our first tests, we show that emissions are reduced more in areas with high industrial 

activity. First, defining industrial activity by the actual number of firms in an area, in areas with 

many firms, emissions are reduced by about 2.5% while there is no change in emission in areas 

with only a few firms. Second, defining industrial activity by the degree of urbanization, 

emissions are reduced by about 5% in urban areas with high industrial activity while there is 

almost no change in rural areas where less firms are active in our sample. This is consistent 

with the expectation that areas with many firms have more potential to reduce emissions than 

areas with fewer firms given that NOx emissions mostly result from industrial activity.  

We also show that when splitting the sample into areas with more ‘clean’ versus ‘dirty’ 

firms, we do not see a significantly stronger reduction for areas with more ‘dirty’ firms. We 

find a similar but this time significant reduction in areas with ‘clean’ firms. Hence, while 
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emission policies are designed to make the polluter pay targeting ‘dirty’ firms, this result 

suggests that emission taxes affect not only those firms that are mainly responsible for 

emissions, but also hits cleaner sectors. One explanation is that ‘dirty’ firms can pass on the 

emission tax burden to ‘cleaner’ firms, who also respond to emission taxes by cutting 

investments (Jacob and Zerwer, 2022). It thus appears as if emission taxes hit all industrial 

areas at least partially, irrespective of the actual prevalence of ‘dirty’ firms in that area. 

Next, we test for a difference in the response of areas with more versus fewer firms with 

high intangibles to test for the notion that emission reduction often is stronger for firms with 

R&D activity and technological innovation. Consistent with this prediction, we find that those 

areas with more innovative firms cut emissions more than areas with fewer or less innovative 

firms. This indicates that innovation and R&D activity indeed seems to be key when it comes 

to cutting emissions and meeting targets. We also test for the notion that larger firms potentially 

have more resources and thus more potential to reduce emissions post reform. We confirm this 

idea and find a negative and significant effect for areas with larger firms. This effect is 

statistically different from the effect for areas with smaller firms. 

We contribute to the literature in two ways: First, we add to the literature on emission taxes 

using the merits of homogeneously gridded and integrated satellite-based data. To measure 

emissions, previous literature either modelled emission data or used proxies or sensor data that 

were highly aggregated to administrative units or sectors (see, e.g., Omrani et al., 2020 or Zhen 

et al., 2019). If firm level data are used, firm level emissions focus on information on free 

allocation of emissions allowances (Abrell et al., 2011) or firm data only comprise limited 

information at the firm or plant level (Klemetsen et al., 2016). We overcome these limitations 

by using highly granular spatial NO2 emission data coupled with data on local economic 

activity to capture a holistic picture of economic activity related to the emissions. Another 

advantage of using NO2 data is that this tracer for anthropogenic combustion processes remains 
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rather local and close to the sources as it dissolves locally after a few hours and is hardly 

advected into other regions, thereby limiting the risk of emission leakage (Antweiler and 

Gulati, 2016).2 With this data, we contribute to studies measuring emissions at an aggregate 

level by showing that emission taxes can reduce emissions (Pretis, 2022). However, our 

estimate is below country level estimates (Metcalf and Stock, 2022). Importantly, our estimate 

is much smaller than plant level or sector specific emission effects (e.g., Andersson, 2019, 

Klemetsen et al., 2016), indicating the importance to also capture effects beyond the actual 

plant or the specific potentially emission intense industry. Plant or sector level tests may 

overstate the aggregate response as emissions that stem from buildings, commercial traffic, and 

transport need to be considered when exploring the effectiveness of environmental initiatives 

even though industrial processes are the main contributor to overall emission levels. 

Second, we contribute to the literature on the real effects of environmental and social 

responsibility for firms. Previous research shows that investors react to positive and negative 

corporate social responsibility (CSR) events (Krüger, 2015) and that ‘dirty’ firms are punished 

through divestment (Oehmke and Opp, 2020). Further, a firm’s market value, productivity, or 

sales growth can depend on CSR standards and their realization (Flammer, 2015, Dowell et al., 

2000). Matsumura et al. (2014) also find that firms that do not properly disclose their emissions 

under the existing environmental, social, and governance (ESG) regime face a higher capital 

market discount. While the literature on the real effects of ESG mostly observes the effects of 

existing corporate standards as well as disclosure requirements, we add to this debate by 

considering environmental taxes and, more importantly, environmental outcomes in the form 

of NO2 emissions. With our finding that an emission tax, decreases the NO2 burden, but at 

rather modest levels, we contribute to an understanding of the real effects of environmental 

 
2 Our Spanish setting also overcomes potential identification of existing studies that, for example, leverage the 
implementation of a carbon tax in British Columbia that shares a border with Washington (US), Alberta and 
Yukon (both Canada) (Pretis, 2022, Lawley and Thivierge, 2018, Erutku and Hildebrand, 2018, Rivers and 
Schaufele, 2015). Policies in Canada might spill over to the US and vice versa. 
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taxes, particularly on the key air pollutant NO2 with many detrimental effects for human beings 

and the environment but also being a robust proxy for combustion CO2.  

Finally, we add to the policy debate about the effectiveness of emission taxes. By showing 

that emission taxes lead to only a modest decrease of emissions that varies based on intensity 

of industrial activity, technological innovation as well as firm size but that this effect is not 

fully related to the prevalence of cleaner versus dirtier industries, we provide a basis to discuss 

the addition of innovation stimulation policies as well as policies directly targeting specific 

areas (e.g., industry areas) more directly to the standard policy toolkit to reach net-zero targets.3 

This is particularly important as existing literature shows that emission taxes can be costly for 

‘dirty’ and for ‘clean’ firms (Jacob and Zerwer, 2022). Thus, a careful design of emission taxes 

and a combination with other measures can help optimize the desired outcomes. In particular, 

if policymakers intend to target dirty industries, tax policy may not be the first best solution. 

2 Institutional Background 

2.1 NOx and its Effects 

Nitrogen oxides (NOx = NO + NO2) are primarily emitted when fossil fuel is burned 

(EPA, 2022a). This can be by the emission from cars, trucks, or other vehicles, from buildings 

(e.g., heating), but mainly comes from industrial emissions of industrial production processes. 

Indeed, data from EPA (2022b) show that only 1-5% of U.S. NO2 emissions come from non-

industrial processes. In Spain, around 91% of NO2 emissions come from industrial process 

emissions and agricultural soils, 4% from transportation, 3% from buildings, and 1% each from 

other industrial combustion and the power industry (Figure 1; European Commission, 2022). 

Thus, our assumption that most of the NO2 emissions stem from industrial activity seems to 

be plausible as firms are the largest contributor to NO2 emissions. 

 
3 Net-zero targets are targets set by many countries after the Paris Agreement to reach net-zero for CO2 and other 
greenhouse gas emission within a certain time i.e., to produce as much CO2/greenhouse gases as remove from the 
atmosphere. As of March 2022, 33 countries and the European Union have set such a target, either in law or in a 
policy document. More than 100 countries have proposed - or are considering - a net zero target (ECIU, 2021). 
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In addition to several negative health effects being attributed to high NOx emissions, 

environmental effects can also be significant when NOx levels are high (EPA, 2022a). NO2 

and other NOx interact with water, oxygen, and other chemicals leading to acid rain (EPA, 

2022a). The latter can harm ecosystems and contributes to the nutrient pollution in coastal 

waters. Thus, in recent years, policy makers have developed several approaches to tackle high 

NOx levels and reduce potential negative consequences. Policy responses range from softer 

forms such as air quality monitoring, modeling, and reporting to putting a hard price on 

pollution by introducing emission taxes or other pricing schemes. Particularly the later form of 

taxes on emissions have gained increasing popularity in recent years. For instance, while 

Sweden, Italy and Denmark were early adopters by introducing a charge on NOx in 1992 (IEA, 

2017) and 1998 (EU Commission, 2015, 2016) respectively, other countries such as Estonia, 

Norway, and other Eastern European countries adopted similar taxes only in the early 2000s. 

The quantity of NOx emitted by firms depends largely on the firm size and industry, the 

availability of abatement technologies as well as the explicit and implicit price of emissions. 

Moreover, NOx is a ground level greenhouse gas, which is not very stable and therefore cannot 

be transported too far by wind. Under average conditions, NO2 lasts in the atmosphere for only 

a few hours up to one day. This local and temporary preciseness can be also seen in other 

research using the same data that shows “the weekend effect” by emissions going down on 

Saturdays or Sundays (Bucsela et al., 2007). Thus, NO2 has the advantage that it can be easily 

attributed to a specific location and to the local economic activity without measuring any 

additive effects from earlier emissions or emissions generated at a different location and is a 

good proxy to estimate potential effects of emission policies. 

2.2 Exploiting Regional Environmental Taxes in Spain 

To explore the effect of NOx emission taxes on actual NOx emission levels, we leverage 

the introduction of a local emission tax in 2013 in the Spanish Comunidad Valenciana (see also 
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Jacob and Zerwer, 2022 for more details). Following the new law introduced as of January 1, 

2013, SOx and NOx within the community are taxed between €9 and €50 per ton, depending 

on firm-specific consumption levels. In Figure 2, we illustrate the exact timeline of the 

introduction of the tax (see, also, Jacob and Zerwer, 2022).  

To observe a potential change in emissions, this setting is advantageous for several 

reasons. First, it is the only tax reform on NOx emissions during our observed period in Spain. 

While other local emission taxes have been introduced during the early 2000s, the introduction 

in the Valencian Community allows us to compare it to the rest of Spain without confounding 

emission reforms. Other local environmental reforms took place during our sample period in 

Spain. However, none of them is related to emissions. We control for these reforms in a 

separate test. Especially as existing studies struggle to find an appropriate control group (see 

for instance Bayer and Aklin, 2022) as most emission reforms are at the federal level, 

leveraging a regional reform is advantageous. Second, despite being local in nature, the 

Valencian emission tax is economically significant. It is estimated to have raised close to an 

additional €30 million in annual revenue (Europa Press, 2012). The reform increased corporate 

tax bills by, on average, 13%4 (and more for some firms) and caused substantial compliance 

and consulting costs; it also triggered investment responses (Jacob and Zerwer 2022).  

Due to its economic significance, we expect the reform to affect emission levels, also 

because industrial activity is the main driver of NO2 emissions. This might not be the case for 

a marginal tax increase. Third, the within-country setting allows us to explore differences in 

emission levels across Spain while holding general economic conditions and regulations on a 

federal level constant. Since only few areas share borders with other countries, i.e., France or 

 
4 To calculate this amount, we follow Jacob and Zerwer (2022) who calculate the absolute tax burden using the 
rates given by law and then compare it with the total tax burden of firms. As we include all type of firms (and not 
only standalone firms), the average firm in our sample has a lower overall tax burden, resulting in the 13% costs. 
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Portugal, the potential for spillover effects is limited. Thus, it appears that our setting is suitable 

for our purpose of exploring the effect of an NOx emission tax on actual emission levels. 

3 Data Preparation and Merging 

3.1 Satellite Data  

To measure daily and area-specific NO2 levels in Spain for the years 2009 to 2016, we 

use sensor data from the Ozone Monitoring Instrument (OMI) on board of NASA’s AURA 

satellite (Levelt et al., 2006). OMI is a nadir-viewing spectrometer on a polar sun-synchronous 

orbit with a local equator crossing time at 1:45pm local time. With its wide swath and daily 

global coverage, it has been providing observations of tropospheric NO2 vertical column 

densities since 2004 at a spatial resolution of 13 km × 24 km at nadir. In this study, we apply 

gridded tropospheric NO2 vertical column densities (QA4ECV version 1.1) at an equidistant 

spatial sampling of 0.125° × 0.125° (Boersma et al., 2011). The NO2 values are vertically 

integrated throughout the troposphere with the unit µmol/m².  

Tropospheric NO2 is a representative short-lived tracer for anthropogenic emissions 

from transport, energy production, and industrial processes into the boundary layer (Müller et 

al., 2022) with small possible contributions from natural emissions from lightning (Perez-

Invernon et al., 2022) and soil (Lu et al., 2021). Therefore, tropospheric NO2 is extensively 

used to infer NOx emissions (Silvern et al., 2019, Kaynak et al., 2009), quantify lockdown 

effects during the COVID-19 pandemic (Voigt et al., 2022, Liu et al., 2021), examine economic 

impacts (Montgomery and Holloway, 2018, Bichler and Bittner, 2022), and identify urban 

pollution islands and their long-term trends (Erbertseder et al., 2015, Georgoulias et al., 2019). 

As substantiated by Goldberg et al., (2021) and Geddes et al., (2016) there is a strong 

correlation of tropospheric NO2 with surface NO2 concentrations.  

As there is a certain influence on NO2 variability by meteorological conditions, we 

follow prior literature and use a yearly time period for integration to reduce the volatility 
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possibly caused by weather and similar factors (Huang et al., 2017; Song et al., 2019; Müller 

et al., 2022). The average uncertainty of the satellite-based NO2 observations due to the 

tropospheric air mass factor over Europe is quantified by 18 to 26% per pixel (Boersma et al., 

2018). However, a detailed error analysis for individual retrievals exhibits a strong variation of 

these estimates (Boersma et al., 2004). Parameters such as cloud fraction, surface albedo, 

surface pressure, and the a priori NO2 profile shape contribute to the overall error budget. Since 

the yearly mean is calculated from daily observations (with sample size n) and the standard 

error decreases by 1/√n, the overall error can be strongly reduced using annualized data. 

Regarding the systematic error of the NO2 data, a negative bias is evident compared to ground-

based measurements (Celarier et al., 2008). However, since we analyze relative variations from 

year-to-year, this systematic error does not impact our findings.  

Compared to in-situ measurements from ground-level stations, a major advantage of 

satellite-based observation is the area-wide coverage and consistency of high spatial resolution. 

NO2 values are homogeneously integrated with the same spatial resolution. Hence, they 

represent the same conditions and are less prone to issues of representativity as is the case for 

measurement stations (Zhu et al., 2020). This ensures the spatial comparability of the data 

across space. Out equidistant sample further reduces the influence of artificial and inconsistent 

spatial units such as administrative boundaries. In other studies, fuel or energy data is used as 

input. This bottom-up approach for quantifying emissions allows a sector specific analysis.  

While the data have clear advantages, the data come at a cost of several disadvantages. 

For example, uncertainties remain on the spatiotemporal variability of the resulting emission 

because many assumptions need to be made on the emission rates and emission factors (e.g., 

when and where what amount of fossil fuel is combusted at which temperature and at which 

efficiency). The satellite observations, however, enable a quantification of the resulting total 

NO2 burden from all emitting sources, which cannot be disentangled in sector-level data. 
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Moreover, optical measurements from satellite rely on backscattered solar radiation. Hence, no 

data is available during night or under cloudy conditions. While in-situ measurements on the 

ground are direct measurements, the quantities are indirectly obtained from satellite through 

the retrieval of trace gas amounts from measured spectra. Despite the necessary assumptions 

during the retrieval of atmospheric quantities, the characterization of uncertainties and error 

propagation has improved significantly in the last decades. While in-situ measurements can be 

performed continuously during day and night, the repetition rate of satellite observations is 

confined to the orbit type. However, one clear advantage of satellite observations vis-à-vis in-

situ measurements is that our approach captures all overall NO2 concentration and not just one 

specific source (e.g., a chimney). Ultimately, it is the local overall NO2 concentration that is 

relevant for health damages and pollution, thereby speaking directly to policy goals. 

3.2 Firm Level Data and Merging Databases 

To measure and to control for local economic activity, we append our satellite data with 

aggregated firm data. For our firm data, we use all available data on Spanish firms from Bureau 

van Dijk’s Amadeus database over the period 2009-2016. Our analysis is based on all 

unconsolidated financial statements. In contrast to consolidated balance sheet information, as 

provided, for example, in Compustat Global, unconsolidated data allow us to locate the activity 

of a single firm to match economic activity with the spatial emission data. We start with all 

available firms and exclude firms with total assets below €50,000, fixed assets below €5,000, 

and those that do not report earnings before interest and taxes. We also exclude observations 

with negative sales, total assets, or cash as these observations are most likely misreporting. To 

match our firm and emission data, we use geocoding to add the geographic longitude and 

latitude to all available postcodes of the Spanish Amadeus firm data. We consider full postcode 

level data (in contrast to full address data) to be sufficiently granular to match our datasets. 

Since 5-digit Spanish postcode areas are fairly small, these postcodes ensure a precise matching 



13 

of firm and emission location. We use the OpenCage STATA code that matches the closest 

longitude and latitude to a given postcode (where we use the midpoint). In a second step, we 

locate postcodes to the pixel resolution of our satellite data so that we can assign each postcode 

to the 10 × 10 km from the satellite data. In a third step, we weight our main economic variables 

by sales to ensure that our firm level economic control variables reflect the local economic 

activity. Finally, we add additional regional variables such as population and car registration 

based on two-digit postcodes as more granular data are not available. We obtain this data from 

the Instituto Nacional de Estadística (Spanish National Statistics Institute).  

This gives us a full panel data set of emission data as well as economic and demographic 

control variables. We also make one final modification: We exclude all areas without any 

meaningful economic activity, that is, any area of 10 × 10 km with fewer than five firms. We 

choose five firms as this is below the bottom quartile of the existence of industrial activity. 

After these steps, we arrive at our final sample of 15,374 observations from 1,957 areas. 

4 Empirical Setting 

4.1 Estimation Strategy 

We exploit the local emission tax refom in a DiD approach. As shown in Figure 3, the treatment 

comprises the Autonomous Community Valenciana identified per two-digit postcode (i.e., 

observations with the two-digit postcode equal to 03, 46, or 12). As our control group, we use 

all other Autonomous Communities of Spain. We thus estimate the following equation: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 =  𝛼𝛼0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖  ×  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝛾𝛾𝑋𝑋𝑖𝑖,𝑗𝑗,𝑡𝑡−1 + 𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 (1) 

where the dependent variable, Emissionsi,t, is the natural logarithm of the amount of emission 

measured in µmol/m² per area i in year t. While it is common in the literature to simply use the 

absolute amount as our main dependent variable (for instance, see Müller et al., 2022), we use 

the natural logarithm of the absolute amount of NO2 content as our main dependent variable 

for two reasons. First, the raw emission values are highly skewed (skewness is above 2.3). 
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Second, the log transformation allows us to more easily interpret the coefficient estimate as a 

percent change (with some simple calculations). The dummy variable Treatment is equal to 

one for area i in the Valencian Community where the emission tax was introduced in 2013 and 

zero otherwise. The dummy variable Post is equal to one for years 2013 to 2016, and zero 

otherwise. Since our regression sample starts in 2009, we use four pre-reform and four post-

reform years. The main variable of interest is the DiD coefficient, namely the interaction 

Treatment × Post. We expect to find that relative to areas in other places of Spain, the areas in 

the Community Valenciana decreased their emissions after the reform (𝛽𝛽1 < 0). 

 The baseline regression also includes a vector of control variables (𝑋𝑋𝑖𝑖,𝑗𝑗,𝑡𝑡−1), building on 

prior economic literature on investment decision (e.g., Badertscher et al., 2013, Shroff et al., 

2014, Shroff, 2017, Fox et al., 2022) but also literature using similar emission data (Müller et 

al., 2022). We further include area fixed effects (𝛼𝛼𝑖𝑖) as well as year fixed effects (𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡) to 

account for time-invariant area characteristics and general yearly trends. The control variables 

are lagged by one year. Specifically, we control for Firm Size (defined as the natural logarithm 

of aggregate sales), Number Firms (defined as the natural logarithm of the number of firms 

within an area), Population (defined as the natural logarithm of the absolute population count),  

and Past Emissions (defined as a dummy variable being equal to one if above median emissions 

in past years). We also include weighted averages of the following firm characteristics in an 

area year: Investment (defined as change in fixed assets scaled by total assets), Sales Growth 

(defined as the natural logarithm of sales), Profitability (defined as net income scaled by total 

assets) and Tangibility (defined as fixed assets over total assets). As at least a small part of 

NO2 emissions is caused by cars and emissions from road traffic (European Environment 

Agency, 2022), we control for its intensity by including Car Registrations (defined as car 

registrations per inhabitants). We cluster standard errors at the area level. 
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 Another important research design choice relates to entropy balancing. Because emission 

level data is noisy and because regions differ in their economic activity, we ensure that the 

treated 10 × 10 km areas are comparable to the 10 × 10 km control areas prior to the emission 

tax introduction. For this reason, we balance our sample using pre-treatment emissions of 2009, 

2010 and 2011, the dummy variable for areas with above median emission in the past, firm 

size, and the area size in terms of number of firms as well as the firm control variables that 

differ the most between the two groups, namely, car registrations, sales growth, investment, 

profitability, and tangibility. The approach of using matching difference-in-difference 

estimators, including matching on past outcomes, is frequently used to ensure the treatment 

and control group are more comparable and the resulting estimator less biased and popular for 

research evaluating policy measures (see, e.g., Blundell and Costa Dias, 2000, Girma and Görg, 

2006, Ham and Miratrix, 2022), particularly when it comes to environmental policies (see, for 

instance, Boampong, 2020). According to these authors, combining matching estimators with 

a difference-in-difference design can “improve the quality of non-experimental evaluation 

results significantly” (Blundell and Costa Dias, 2000, p. 438). We thus include three lags of 

pre-treatment outcomes to reduce the potential bias and to increase the reliability of the 

estimates (see, e.g., Ham and Miratrix, 2022). The final weights in our tests are illustrated in 

Figure 4. Matched areas are mostly located in the Autonomous Communities of Galicia, 

Castilla y Leon, Castilla la Mancha, Andalucía and the upper part of Catalunya. In contrast, the 

cities of Madrid and Barcelona and surroundings are assigned only very small weights. This is 

plausible as the areas around Madrid and Barcelona with over 5 million inhabitants each differ 

from Valenciana and its biggest cities Valencia and Alicante. Instead, the control group covers 

areas around Seville, Malaga, Murcia, Bilbao, or Oviedo, which are more comparable to 

Valencia or Alicante in terms of total population than Madrid or Barcelona.  
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4.2 Descriptive Statistics 

Table 1 reports statistics for the variables of our sample of 15,374 observations used for 

the baseline analysis. The variable definition can be found in the Appendix. All area level 

control variables are winsorized at the first and 99th percentiles. Areas, on average, have 

emissions of 28.12 µmol/m². The average (median) area has investment of 4.6% (3.7%), sales 

growth of 4.2% (3.8%) and a profitability of 2.8% (2.3%). Panel C presents evidence of how 

the area of our treatment and control group compare. For most variables, we see a difference 

between areas located in Valenciana and those in the rest of Spain. For instance, areas in 

Valenciana have on average more firms within a single area, have higher past emissions and a 

higher profitability. For this reason, we use a balanced sample in all our tests as discussed 

above. Table 1, Panel D shows descriptive statistics for the balanced panel. 

4.3 Identifying Assumptions 

Next, we assess the parallel trend assumption prior to the introduction of the emission tax 

in 2013. The underlying assumption for our chosen empirical approach is that, absent of the 

reform in 2013, emission levels in our treatment (Valencian community) and our control group 

(rest of Spain) would have evolved similarly. While we cannot test this argument after the 

reform, we conduct a parallel trend test for the pre-reform years 2009 to 2012. Figure 5 shows 

the difference in emission levels between areas located in the Valencian Community and the 

other areas as well as the 95% confidence intervals. The figure suggests that prior to the reform, 

we see a parallel trend of our treatment and control group allowing us to proceed with our 

empirical approach (which is due to our entropy balancing approach). 

5 Results 

5.1 Graphical Evidence of the Emission Reductions 

We start our analysis by illustrating the NO2 data in a map of Spain over time. Figure 6 

shows average yearly NO2 levels across Spain from 2009 until 2016. Darker grey areas indicate 



17 

areas with high emission levels (with black being the maximum of 80 µmol/m²) and light grey 

represent areas with fewer emissions (with white being the minimum of 0 µmol/m²). As 

expected, one can clearly see the largest cities such as Madrid or Barcelona as indicated by the 

darker shades. While there is an overall trend of reduced emissions over time (more light grey 

areas and less dark spots), particularly the Comunidad of Valenciana seems to have less 

emissions after the introduction of the emission tax.  

This can also be seen when zooming into the Autonomous Community Valenciana and the 

neighboring provinces in Figure 7. The figure shows the difference of Valencian emissions to 

the Spanish yearly average NO2 levels for the years before (2009, 2010, 2011), during (2012, 

2013) and after (2014, 2015, 2016) the tax reform. We set the maximum for the difference to 

the average emissions this time to 15 µmol/m² and the minimum to -25 µmol/m² to observe 

differences on a more granular level. While NO2 levels are generally quite high in the pre-

reform years (darker grey areas) with a peak in 2012, the graphical evidence suggests that there 

is a reduction in NO2 emissions in post reform as indicated by a lightening of the grey areas, 

in particular, in the treated areas (highlighted in red) of each map. Hence, it appears as if there 

are lower NO2 levels in the Valencian Community after the tax reform. 

5.2 Baseline Results 

In Table 2, we test the emission level response in a regression analysis of areas located in 

the Valencian Community (treatment group) versus the entropy-balanced rest of Spain (control 

group) from Equation (1). In column 1, we estimate the regression using year and area fixed 

effects, but without control variables. The DiD coefficient (Treatment × Post) is negative and 

significant at the 10% level. Once we include controls, the estimate remains very similar. The 

results indicate that emissions in an area are cut by around 1.2% following the introduction of 

the emission tax in 2013. Given that similar emission initiatives that introduced taxes on input 

factors such as gasoline or other fuels led to a cut in CO2 emissions between 1% and 7.3% 
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(Rafaty et al., 2020, Martin et al., 2014) or the fact that emission taxes reduced firm or plant 

level emissions by up to 45 % (e.g., Klemetsen et al., 2016), our finding, while being 

economically significant, is at the lower end of prior estimates.5 Put differently, our findings 

indicate that when actual emission output levels on a granular level, the estimated effect are 

much smaller than plant or sector-level data. One potential reason is that our data a able to 

capture all other sources of NOx emissions such as commercial traffic and transportation. To 

inform policymakers, it is, however, critical and important to obtain a holistic picture of 

emissions and to account for all potential sources of emissions.  

5.3 Sensitivity and Robustness Tests 

5.3.1 Alternative Dependent Variables 

We further test the robustness of our results by using two alternative dependent variables in 

our main specification. First, we use the absolute amount of NO2 as common in the literature 

using similar data (see, for instance, Müller et al., 2022). The results are presented in column 1 

of Table 3. The coefficient remains negative and significant. Second, we lag the treatment 

status by one year (column 2) to capture adoption effects that may take time. Also, for this 

dependent variable the DiD coefficient of Treatment × Post remains negative and significant. 

While the size of the two coefficients is not comparable due to their different nature, the 

statistical significance is not affected. 

5.3.2 Alternative Model Specifications 

Next, we test the robustness of our findings to alternative model specifications as we restrict 

our analysis to certain requirements. First, we further strengthen the assumption that areas are 

required to have at least five firms to requiring at least 10 firms6 (column 3 of Table 3). The 

 
5 Previous literature mostly focused on the introduction of an emission tax on input factors such as fuel or gasoline. 
For instance, it observes the carbon tax on gasoline in British Columbia in Canada (Rivers and Schaufele, 2015, 
Lawley and Thivierge, 2018, Pretis, 2022), a carbon tax on transport fuels in Sweden (Andersson, 2019) 
6 In untabulated tests, we also use alternative number of firm restrictions (e.g., allowing to only have one firm per 
area). Robustness is also not affected by these changes. 
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DiD coefficient of Treatment × Post remains negative and significant. The estimate suggests a 

decrease in emissions of about 1.2% after the reform in 2013 for the treatment group. Second, 

as areas are not completely independent of each other and share e.g., common administrative 

institutions, we use standard errors clustered at the five-digit postcode level. The main 

coefficient in column 4 of Table 3 remains negative and significant indicating that our main 

finding is also robust to this design choice. 

5.3.3 Exclusion of other Spanish Regions 

As there are many local taxes in Spain7, we test the robustness of our main results by 

excluding those regions that had any kind of tax reform during 2012 to 2014 from our control 

group. These local tax reforms cover, for example, the introduction of a tax on empty housing 

in Catalonia in 2015 or a gambling/bingo tax in Asturias in 2014 as well as all areas that had 

an environmental tax reform in the given time period. These reforms can relate to water, waste, 

or any other environment related product or the reform served a general environmental 

purpose.8 The result of this analysis is shown in column 5 of Table 3. The DiD coefficient 

remains negative and significant, and even slightly increases in size and indicating a reduction 

of emissions reform by 1.6%. Overall, these tests indicate that the 2013 emission tax 

introduction in Valenciana led to a decline in NO2 levels between 1.2% to 1.6%. Hence, these 

results continue to indicate that the overall response was rather modest in comparison to prior 

estimates, in particular when using plant-level data (e.g., Klemetsen et al., 2016). 

5.3.4 Placebo test 

Next, we perform a placebo test to address concerns that our findings capture unobservable 

local trends. Specifically, we run a test for rural areas without any (for us measurable) industrial 

activity and compare these areas to all other areas (i.e., urban areas or rural areas with industrial 

 
7 A full list of all existing Spanish regional taxes can be obtained from the website of the Ministry of Finance and 
Public Administration (2022) under “Tributos Propios Autonomico” including all historic versions. 
8 For instance, Galicia introduced in December 2014 a tax for environmental compensation of mining activities 
in the Autonomous Community. Extremadura introduced a tax on landfill waste disposals introduced in 2012. 
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activity). The advantageous feature of this approach is that areas that can be classified as rural 

without industry are a pseudo treatment group. There should be no response for these areas. 

However, we expect to find a negative overall effect for all other areas as urban or rural 

industrial areas should exhibit a reduction in emissions. Results of this test are presented in 

Table 4. As expected, the coefficient for rural areas without industry is non-significant and 

very close to zero. Importantly, we find that for all other areas, there is a modest effect of 

emission taxes on emission levels (2.4%). This effect is statically different from the coefficient 

of rural areas with industry and non-rural areas, supporting our main inferences. 

6 Exploring the Heterogeneity in the NO2 Emission Level Response 

We next examine differences in the response to the emission tax. The objective of these tests 

is to inform policymakers and academics which regions benefit most from changing NOx taxes 

and in which regions, emission taxes may not have any or a much smaller effect on emissions. 

Moreover, these tests can help us assessing (some of) the mechanisms through which emission 

taxes can reduce emission levels. Finding evidence of reduced emission levels when expected 

by theory can further corroborate the causal interpretation of our findings. 

6.1 Estimation Approach 

To navigate through these tests, we first present the empirical approach to test for 

heterogeneity. We consider industrial activity (proxied by number of firms, urbanization or 

past emission levels) and firm characteristics (i.e., intangible assets and firm size). Using these 

characteristics, we perform a triple difference (DDD) analysis based on the following equation: 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 =  𝛼𝛼0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

+ 𝛽𝛽2𝐻𝐻𝐻𝐻𝐻𝐻ℎ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 

+𝛽𝛽3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝛾𝛾𝑋𝑋𝑖𝑖,𝑗𝑗,𝑡𝑡−1 + 𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 (2) 

where Emission is defined as above. We again include all lagged controls as well as area and 

year fixed effects. The Split Variable is a dummy variable equal to one if it falls in the high 



21 

category of the respective split (e.g., area with high industrial activity) and is zero otherwise 

(e.g., area with low industrial activity). In this model, the interaction Treatment × Post is the 

emission effect in the low category of the split variable and the DDD coefficient High Split 

Variable × Treatment × Post captures the difference between the high and the low group of 

the respective split variable. All other interactions of the DDD model are either absorbed by 

the fixed effect structure or are included in the regression but are not tabulated for brevity. 

6.2 Role of Industrial Activity and Emissions 

 As a first channel, we test whether the industrial activity in an area impacts the reduction of 

emissions post reform. Emission taxes are designed to make the ‘polluter pay’ and to target 

‘dirty’ firms or larger industries as these contribute more to overall emissions. In contrast to 

this, the relationship between emissions and the price of emissions may in fact be non-linear 

(Nordhaus, 1993). For instance, if a firm before the introduction of an emission tax already 

operates away from the average economy’s emissions (i.e., with much higher emissions), taxes 

are expected to only have a small effect on emissions as cheaper abatement options already 

have been exploited (Rafaty et al., 2020). Similarly, a firm operating at emission level average 

or below would react more strongly and reduce emissions more. We test for these conflicting 

views by exploring the economic number of firms within an area (industrial activity measured 

by presence of firms), degree of urbanization (industrial activity measured by urbanization) 

and by looking at past emission levels (industrial activity measured by emissions). 

6.2.1 Presence of Firms  

We start by measuring the industrial activity through the presence of firms. Taking the 

number of firms, we use Large Industry Area as our split variable in equation (2). The dummy 

Large Industry Area is equal to one if an area is in the top quartile in terms of number of firms 

in an area and zero otherwise. We conduct the split in 2011 to avoid that the reform affects the 

location of firms in our sample period. Given that large industry areas are often seen as the 
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main contributors to pollution, we expect a larger decrease in industrial areas relative to areas 

with fewer firms. In other words, we expect β2 to be negative.  

The results are shown in Table 5, Panel A. In column 1, we present the overall effect of the 

interaction Treatment × Post, which is the coefficient β1. This coefficient shows the reduction 

of emissions for areas with a low number of firms (Large Industry Area = 0). The coefficient 

is close to zero and not significant, indicating a zero response of areas without much industry. 

In column 2, we show the overall effect for large industry areas (Large Industry Area = 1) 

which is calculated as β1 + β2 (Treatment × Post + Large Industry Area × Treatment × Post). 

The results are consistent with the idea that we see a larger reduction in large industry areas 

given their previously high pollution levels as the coefficient is negative and significant and 

larger than the baseline estimate (about 2.5% post reform reduction of emissions). Importantly, 

the two coefficients are significantly different from each other (t-stat = -2.09). We subject this 

finding to similar robustness tests as our main findings. These tests are reported in Panel A of 

Table A.1 in the Online Appendix and obtain qualitative similar findings. 

6.2.2 Urbanization 

We next use the degree of urbanization to test for industrial activity within an area. Urban 

areas generally can be characterized by the presence of more firms than rural areas due to 

advantages in infrastructure, labor markets, and closeness to consumers. For instance, in our 

sample, in urban areas, which we define an area as a city if its population is 50,000 or above 

following the Worldbank’s approach (2020), we have an average of 612 firms per area whereas 

in rural areas we only have 147 firms per area. Thus, also the degree of urbanization can serve 

as a proxy for industrial activity. We then define an area to be a city with a population of 50,000 

or above (City = 1) and areas with a population below this threshold to be rural (City = 0). 

When more firms are in an area as indicated by the degree of urbanization, we again expect a 

stronger response in contrast to rural areas. That is, the coefficient β2 is expected to be negative. 
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The results of this analysis are presented in Table 5, Panel B. While we see a negative but 

nonsignificant coefficient for rural areas in column 1, the overall effect for cities in column 2 

is higher and statistically different from the coefficient of rural areas. This indicates that indeed 

emissions are cut more strongly in urban areas. The reduction in emissions in urban areas (about 

2% of our sample) amounts to 4.8%. We subject this finding to several robustness tests using 

the absolute amount NO2 as an alternative dependent variable, adjusting the threshold of firms 

required to be 159 and using standard errors clustered at the two-digit postcode level (Table 

A.1, Panel B). These tests generally support the idea of a stronger effect for urban areas.  

6.2.3 Emissions of Firms  

Since the split by the number of firms or degree of urbanization does not account for the 

actual pollution caused by a firm or industry, we next sort areas into those with ‘dirty’ versus 

‘clean’ industrial activity. Since the emission tax is levied on the absolute emissions of NOx 

by a firm into the atmosphere (BOE, 2013), one could expect polluters to cut emissions more 

strongly than relatively ‘clean’ firms. To test this, we use High Emissions as our split variable. 

We base this measure on the industry composition in an area in 2011. Each firm is first sorted 

into ‘dirty’ and ‘clean’ industries based on industry-level NOx emissions scaled by aggregate 

sales obtained from Eurostat (2021). Industries above the median of industry-level NOx 

emissions are defined ‘dirty’. We then calculate the sales-weighted percent of firms that are 

classified as ‘dirty’ in an area. This measure provides us an area-specific measure of the 

prevalence of dirty versus clean firms. We then use this percent and define a dummy variable 

High Emission of the percent of dirty firms in an area is above the median. Since the overall 

level of economic activity can affect the reform response (see Panel A), we perform the sorting 

into high versus low emission areas within quintiles of the number of firms per area. This 

ensures that the cutoff to define dirty and clean areas considers the size of the area. Moreover, 

 
9 In untabulated tests, we show the robustness to using all areas even without any firms  
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we modify equation (2) and include size quintiles times year fixed effects. These two 

modifications ensure that we sort on the extent of dirty versus clean firms within similarly sized 

areas and we compare areas with similar number of firms that differ in the density of dirty 

versus clean firms.10 If dirty firms react more strongly consistent with the polluter pays 

principle, we expect the β2 to be negative.  

The results are presented in Table 5, Panel C. We include group size fixed effects to account 

for time-invariant characteristics of areas with more firms relative to areas with fewer firms. In 

column 1, we show the coefficient for ‘clean’ areas (β1, Treatment × Post). Column 2 shows 

the coefficient for ‘dirty’ areas (β1 + β2, Treatment × Post + High Emissions × Treatment × 

Post). The results show negative coefficients for ‘clean’ and for ‘dirty’ areas. However, the 

estimate is only significant for ‘clean’ areas, and the two effects are not statistically different 

from each other (t-stat = 0.25). This supports the notion that it may not only be the polluters 

that pay for the emission tax, but that also clean industries respond to emission taxes (as, e.g., 

evidenced by the cut in investment among these firms; Jacob and Zerwer 2022). These results 

are similar when using absolute NO2 emission as the dependent variable, when using our 

dependent variable NO2 to split into ‘dirty’ and ‘clean’ or when using standard errors clustered 

at the five-digit postcode level (see Panel C, Table A.1 of the Online Appendix). Overall, these 

results show that emission taxes do not necessarily only target polluters, but also ‘clean’ firms.  

6.3 Role of Firm Characteristics 

Second, reducing emissions and moving to a zero-emission economy most likely depends 

on specific firm characteristics that foster and fund technological innovation and new product 

and process development. Existing literature considers R&D spending and innovation central 

to reducing emissions and meeting given targets (Metcalf, 2019, Acemoglu et al., 2012, 2016). 

Further, Brown et al. (2022) and Krass et al. (2013) show that emission taxes can stimulate 

 
10 We note that our results are similar when we split based on past emission levels (results untabulated). 
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R&D spending and incentivize the adoption of environmentally friendly technology. This 

environmentally friendly technology in turn can help firms reduce their emissions through, for 

example, innovative filter technologies or similar adaptions. Thus, more innovative firms are 

expected to decrease emissions more than their non-innovative counterpart. This idea is also 

supported by Gerlagh and Lise (2005) who show that carbon taxes are indeed only effective if 

they induce technological change. We test this idea by looking at intangible assets (as a proxy 

for R&D activity) as well as firm size (as a proxy for the availability of resources). 

6.3.1 Intangible Assets 

Since our firm level data do not contain information on R&D spending, we can only use 

firms’ stock of intangible assets to test this notion. Specifically, we create the split variable 

Intangibles which is equal to one if an area is in the top tercile of the ratio of intangibles over 

fixed assets in 2011 and zero otherwise. As we expect firms with more innovations to be able 

to cut emissions more effectively, we expect β2 to be negative. Results are presented in Table 6, 

Panel A. The coefficient for areas with low intangible to fixed asset ratios is slightly negative, 

but not significant (β1). In contrast, the overall effect for areas with high intangibles to fixed 

assets is negative and significant (β1 + β2). This effect, however, is slightly not significantly 

different from the coefficient for areas with a low intangible ratio (t-stat = 1.50).  We again 

perform several robustness tests in Panel D of Table A.1, Online Appendix, using the absolute 

amount of NO2 as the main dependent variable, requiring 15 firms per area, and using standard 

errors clustered at the five-digit postcode level. Our inferences remain robust in these tests and, 

more importantly, the difference between low and high intangible areas becomes significant 

supporting the above interpretation of results. Overall, the results support the idea that firms 

that innovate and invest in environmentally friendly technologies are better equipped to cut 

emissions following the reform in contrast to their non-innovative counterparts. 
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6.3.2 Firm Size 

We also use firm size to test for differences across regions. We build our split variable Firm 

Size on the natural logarithm of sales. Firm Size which is equal to one if an area’s average sales 

are in the top quartile in 2011, and zero otherwise. As larger firms potentially have more 

resources to adapt new technology and thereby adjust to the new price of emissions, we expect 

the coefficient β2 to be negative. Results are presented in Panel B of Table 6. The coefficient 

for areas with small firms is small and not significant (β1, Treatment × Post). In contrast, the 

coefficient for areas with larger firms is negative and significant (β1 + β2, Treatment × Post + 

Firm Size × Treatment × Post) and significantly different from the coefficient for areas with 

smaller firms. The estimates suggest that a post-reform emission reduction of 2.3%. This 

supports the idea that indeed firms that are bigger and potentially have more resources to adapt, 

react more strongly after the introduction of the new emission tax. Again, this result is robust 

to similar robustness tests as above as shown in the Online Appendix, Table A.1, Panel E. 

7 Policy Implications and Conclusion 

This paper investigates the impact of an emission tax on emission levels, leveraging a 

local tax on NOx emissions in Spain in 2013 and unique multitemporal satellite data on levels 

of NO2. Our results show that the local Spanish emission tax can reduce the actual NO2 burden 

by about 1.2%. The effect depends on the industrial activity and technological innovativeness. 

Large industry areas with many firms, highly urbanized areas as well as areas with a high 

degree of innovative or larger firms reduce emissions more in response to the emission tax 

reform than, for example, rural areas or areas with smaller firms. However, we also find that 

areas with more dirty industries exhibit no significantly different reduction in NO2 levels as 

areas with cleaner industries. This result contrasts the ‘polluter pays’ principle and suggests 

that emission taxes might not target necessarily only dirty firms but that the effects spill over 

to cleaner firms, explaining also the rather modest aggregate response. 
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Our findings thus have important implications for the debate of the optimal design of 

emission taxes. While the emission tax seems to be effective by leading to a net decrease in 

emissions, it does not directly target those firms that are mainly responsible for emissions, but 

hits predominantly industrial areas. This is because ‘dirty’ firms may pass on taxes to ‘clean’ 

firms (Jacob and Zerwer 2022). However, the cut in emissions seems to be particularly 

accelerated via innovation and technology improvements. Thus, while introducing emission 

taxes is the first step towards achieving zero emission targets, there is a need to combine it with 

other complementary policy measures to support R&D investments and innovation to 

accelerate the reduction as well as a more targeted design to make the real polluters pay. 

We acknowledge that our analysis has several limitations. First, while the local setting 

of the Valencian Community has many advantages, our findings may not generalize to other 

countries and settings. This can be explored in future research. Second, the reform in our setting 

has been almost 10 years ago. Advancements in abatement technologies since then are highly 

likely. Thus, future research could focus on a more recent setting. Third, as we measure the 

integrated NO2 amount from satellite the contributions from different sectors are mixed and a 

direct correlation to emissions from industry can only be made by several assumptions, 

although we can still see that industrial concentration and urbanization plays an important role 

in the tax effect on emissions. Fourth, due to our empirical matching approach, treatment and 

control group give only with limited weight to hot spots such as Barcelona or Madrid. While 

our findings give a some indication about a potential response for more urbanized areas, we 

cannot make direct statements about large city hubs. Fifth, while complementary policy options 

in addition to an emission tax might be meaningful to target specifically polluting firms, we 

cannot make any statements about the effectiveness of such policies. Future research could 

concentrate on the combined effect of emission taxes and other environmental policy measures.   
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Appendix A: Variable Definitions 
This table shows the descriptions for all the regression variables. 
Variables Description Level 
ln(NO2) Natural logarithm of NO2 column density in µmol/m². Area 
NO2 NO2 column density in µmol/m². Area 
Treatment Dummy variable equal to 1 for areas located in Valenciana, 

and 0 otherwise. The area location is based on longitude and 
latitude data.  

2-digit post code 

Post Dummy variable equal to 1 for 2013, 2014, 2015 and 2016 
and 0 otherwise. 

Area 

Firm Size The natural logarithm of sales.  Area 
Number Firms The natural logarithm of firms within an area. Area 
Population The natural logarithm of absolute population count. 2-digit post code 
Car 
Registrations 

Car registrations per inhabitants. If the number of cars per 
inhabitant is not available for an area, we use the regions 
average. 

2-digit post code 

Past Emissions Dummy variable equal to 1 for areas with above median 
emission in the past and 0 otherwise. 

NACE Code 

Investment Change in fixed assets from year t - 1 to t plus depreciation 
scaled by total assets in year t - 1.  

Area 

Sales Growth The natural logarithm of sales in year t minus the natural 
logarithm of sales in t - 1.  

Area 

Profitability Net income in year t scaled by total assets in year t - 1. Area 
Tangibility Fixed assets in year t over total assets in year t. Area 
Large Dummy variable equal to 1 for areas with number of firms in 

the top 25th quartile, and 0 otherwise. 
Area 

Dirty Dummy variable equal to 1 for areas with emissions in the 
top 25th quartile, and 0 otherwise. 

Area 

Intangible Dummy variable equal to 1 for areas with intangible assets 
(scaled by fixed assets) above median, and 0 otherwise. 

Area 

Urban Dummy variable equal to 1 for areas with population above 
the Worldbank city definition (50k inhabitants), and 0 
otherwise. 

Area 
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Figure 1:  
This figure illustrates the sources of NO2 emissions in Spain between 2009-2016 as % of the total average over 
the years. 

  
 
 

Figure 2: Introduction Timeline Valencian Emission Tax (Jacob and Zerwer, 2022) 
This figure illustrates the overall sequence of the introduction of the new emission tax in the Spanish Community 
Valenciana beginning with the policy announcement on September 28, 2012. 
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Figure 3: Treatment and Control Group, Map of Spain 
This figure illustrates the choice of our treatment (dark grey area) and control group (light grey area). 
 

 
Figure 4: Weights, Map of Spain 

This figure illustrates the used weights for the main analysis. 

 
 

Figure 5: Parallel Pre-Trends 
This figure illustrates the difference in NO2 emissions over the period 2009-2012 between the treated group (areas 
in Valenciana) and the control group (areas in the rest of Spain).  
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Figure 6: Emission Levels over Time across Spain 

This figure illustrates the yearly average of NO2 levels across Spain from 2009 until 2016. Darker grey values 
indicate higher NO2 contents.  
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Figure 7: Emission Levels over Time in Valenciana and bordering Provinces 
This figure illustrates the yearly average emission levels in Valenciana and the bordering provinces from 2009 
until 2016. 
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Table 1: Descriptive Statistics 
This table presents descriptive statistics for our main variables for 15,374 observations from 1,957 areas from 
2009 to 2016. The Appendix defines the variables. Panel A and B show a general overview of statistics. Panel C 
shows the difference in mean between the treatment and the control group. Panel D shows again the difference in 
mean between the treatment and control group, this time for our balanced panel. 

Panel A: Dependent Variables 
 Mean St. Dev.  25th Perc.  Median  75th Perc.  
ln(NO2) 3.2923 0.2861 3.0886 3.2808 3.4551 
NO2 28.1160 9.0636 21.9468 26.5963 31.6609 

Panel B: Other Firm Variables 
Firm Size 17.5777 1.8756 16.1924 17.4057 18.8663 
Number Firms 3.8544 1.4038 2.7081 3.5835 4.8040 
Population 7.2969 1.7633 6.0051 7.3671 8.5222 
Car Registrations 1110.9580 3006.1750 105.7044 286.6482 889.9471 
Past Emissions 0.1776 0.1803 0.0487 0.1165 0.2493 
Investment 0.0459 0.0464 0.0211 0.0368 0.0578 
Sales Growth 0.0420 0.1445 -0.0260 0.0379 0.1001 
Profitability 0.0275 0.0357 0.0090 0.0232 0.0419 
Tangibility 0.3810 0.1149 0.3110 0.3676 0.4370 

Panel C: Difference between Treatment and Control 
 Treatment = 0 Treatment=1 Difference 
ln(NO2) 3.2796 3.4767 -0.1971*** 
NO2 27.7684  33.1937  -5.4252*** 
Firm Size 17.5040  18.6538  -1.1498*** 
Number Firms 3.7949 4.7229  -0.9280*** 
Population 7.2500 7.9828 -0.7328*** 
Car Registrations 1107.888  1155.808  -47.9197***  
Past Emissions 0.1768 0.1896 -0.0129*** 
Investment 0.0461 0.0442 0.0019***  
Sales Growth 0.0416 0.0489 -0.0073***  
Profitability 0.0270 0.0348 -0.0078*** 
Tangibility 0.3825 0.3589 0.0236*** 

Panel D: Difference between Treatment and Control (balanced) 
 Treatment = 0 Treatment = 1 Difference 
ln(NO2) 3.5402 3.5358 0.0044***  
NO2 36.0965  35.6481 0.4485***  
Firm Size 18.4323  18.4489  -0.0166***  
Number Firms 4.5272 4.5481 -0.0209***  
Population 7.2966 7.9573 -0.6609***  
Car Registrations 750.0697 848.8609  -98.7912***  
Past Emissions 0.1855 0.1935 -0.0080*** 
Investment 0.0431 0.0407 0.0023***  
Sales Growth 0.0405 0.0424 -0.0019***  
Profitability 0.0279 0.0308 -0.0029*** 
Tangibility 0.3576 0.3531 0.0045***  
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Table 2: Emission Taxes and Emission Levels, Main Results 
This table presents the main results of our analysis using an entropy balanced panel. The primary dependent 
variable is the natural logarithm of NO2 emissions. The primary independent variable is the interaction between 
Treatment and Post. In column (2), all control variables are lagged by one year. We report robust standard errors 
clustered at the area level for both column (1) and (2). The entropy balanced approach balances on selected control 
variables as well as emissions of 2009, 2010 and 2011. We include year and area fixed effects.*, **, and *** 
denote significance at the 10%, 5%, and 1% levels, respectively. 
 (1) (2) 
Treatment × Post -0.0106* -0.0115* 

 (0.0062) (0.0069) 
Firm Size  -0.0033 
  (0.0050) 
Number Firms  -0.0086 
  (0.0202) 
Population  -0.0626** 
  (0.0279) 
Car Registrations  0.0000 
  (0.0000) 
Past Emissions  0.0766*** 
  (0.0239) 
Investment  0.0375 
  (0.0369) 
Sales Growth  0.0080 
  (0.0091) 
Profitability  -0.0715 
  (0.0679) 
Tangibility  -0.0874* 
  (0.0519)  
Area FE Yes Yes 
Year FE Yes Yes 
Balanced Yes Yes 
Observations 15,374 15,374 
Adj.-R² 0.9518 0.9527 
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Table 3: Emission Taxes and Emission Levels, Robustness Tests 
This table shows the results of our robustness tests. In columns (1) and (2), we use alternative dependent variables. 
In column (3), we adapt the model specifications to only allow for areas with at least 10 firms. In column (4), we 
use standard errors clustered at the five-digit postcode level. In column (5), we exclude all areas with local reforms 
during the pre-reform years. All regressions include area and year fixed effects as well as lagged controls. We 
report robust standard errors clustered at the area level in parentheses. *, **, and *** denote significance at the 
10%, 5%, and 1% levels, respectively. 
 (1) (2) (3) (4) (5) 

Excl. Regions 
None With other local 

tax reforms 
Specification Baseline #Firms>10 SE Cluster Baseline 
Dep. Variable NO2 Future NO2 ln(NO2) 
Treatment ×  -0.4512* -0.4960** -0.0122*  -0.0119* -0.0156** 
Post (0.2742) (0.2419) (0.0071) (0.0072) (0.0062) 
Area FE Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes 
Controls Yes Yes Yes Yes Yes 
Balanced Yes Yes Yes Yes Yes 
Observations 15,374 15,374 12,780 15,374 14,160 
Adj.-R² 0.9457 0.9333 0.9508 0.9526 0.9507 

 
 

Table 4: Placebo Test 
This table shows the results of estimating Equation (2) for a rural area without industry versus a rural area with 
industry & non-rural areas (placebo test). In Panel A, we interact Treatment, Post and Treatment × Post with a 
placebo dummy variable which is equal to one for rural areas without industry and zero otherwise. All regressions 
use area and year fixed effects as well as lagged controls. We report robust standard errors clustered at the area id 
level in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 
Breakdown by Population and # Firms 

 

Rural with Industry  
& Non-Rural 

(1) 

Rural  
without Industry 

(2) 
Treatment × Post 
 

-0.0244*** 
(0.0083) 

0.0014 
(0.0083) 

Difference  
[t-stat] 

0.0258** 
[2.29] 

Controls Yes 
Area FE Yes 
Year FE Yes 
Observations 15,393 
Adj.-R² 0.9528 
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Table 5: Emission Taxes and Emission Levels, Role of Industrial Activity and Emissions 
This table shows the results of estimating Equation (2) for # firms in an area, degree of urbanization as well as 
emission levels. In Panel A, we interact Treatment, Post and Treatment × Post with the dummy variable Large 
Industry Area that is equal to one if an area is in the top quartile in terms of number of firms in an area and zero 
otherwise. In Panel B, we interact Treatment, Post and Treatment × Post with the dummy variable City which is 
equal to one if an area is above the defined population threshold of 50,000 inhabitants and zero otherwise. In Panel 
C, we interact Treatment, Post and Treatment × Post with the dummy variable High Emissions representing the 
percent of dirty firms in an area is above the top quartile. All three splits are executed in 2011. All regressions use 
area and year fixed effects as well as lagged controls. We report robust standard errors clustered at the area id 
level in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 

Panel A: Breakdown by Number Firms  
Split Variable Number of Firms in Area 
 Few 

(1) 
Many 

(2)  
Treatment × Post 0.0000 

(0.0084) 
-0.0250*** 

(0.0091) 
Difference  
[t-stat] 

-0.0249** 
[-2.09] 

Controls Yes 
Area FE Yes 
Year FE Yes 
Observations 15,374 
Adj.-R² 0.9528 
  

Panel B: Breakdown by Urbanization 
Split Variable Degree of Urbanization 
 Rural 

(1) 
Urban 

(2)  
Treatment × Post -0.0096 

(0.0065) 
-0.0484***  

(0.0132) 
Difference  
[t-stat] 

-0.0389***  
[-2.72] 

Controls Yes 
Area FE Yes 
Year FE Yes 
Observations 15,393 
Adj.-R² 0.9526 

Panel C: Breakdown by Emission Levels  
Split Variable % Firms in High Pollution Industry 

 
Clean 

(1) 
Dirty 
(2) 

Treatment × Post 
 

-0.0126** 
(0.0063) 

-0.0098 
(0.0099) 

Difference  
[t-stat] 

0.0028 
[0.25] 

Controls Yes 
Area FE Yes 
Year FE Yes 
Group Size FE Yes 
Observations 15,374 
Adj.-R² 0.9563 
 
  



42 

Table 6: Emission Taxes and Emission Levels, Role of Firm Characteristics 
This table shows the results of estimating Equation (2) for the intangible ratio of firms as well as firm size. In 
Panel A, we interact Treatment, Post and Treatment × Post with the dummy variable Intangibles which is equal 
to one if an area has an above median ratio of intangibles over fixed assets and zero otherwise. The split is executed 
in 2011. In Panel B, we interact Treatment, Post and Treatment × Post with the dummy variable Firm Size equal 
to one if an area’s average firm size in the top quintile in 201l and zero otherwise. The split is again executed in 
2011. All regressions use area and year fixed effects as well as lagged controls. We report robust standard errors 
clustered at the area id level in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% levels, 
respectively. 

Panel A: Breakdown by Intangibles  
Split variable Intangible Assets 
 Low 

(1) 
High 
(2)  

Treatment × Post -0.0040 
(0.0080) 

-0.0220** 
(0.0094) 

Difference  
[t-stat] 

-0.0180 
[-1.50] 

Controls Yes 
Area FE Yes 
Year FE Yes 
Observations 15,374  
Adj.-R² 0.9528 

Panel B: Breakdown by Firm Size  
Split variable Firm Size 

 
Small 

(1) 
Large 

(2) 
Treatment × Post 
 

0.0033 
(0.0088) 

-0.0225** 
(0.0104) 

Difference  
[t-stat] 

-0.0258*  
[-1.95] 

Controls Yes 
Area FE Yes 
Year FE Yes 
Observations 15,377 
Adj.-R² 0.9523 
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Online Appendix 

Table A.1: Robustness Checks Cross-Sections 
This table shows the various robustness checks we perform for our heterogeneity analysis. Panel A shows the 
robustness checks for the Large Industry Area split by using NO2 as an alternative dependent variable (columns 
(1) and (2)), estimating the regression for areas with at least 15 firms (columns (3) and (4)) as well as using 
standard errors clustered at the postcode level (columns (5) and (6)). Panel B shows the robustness tests for Cities. 
Again, we use NO2 (columns (1) and (2)), estimating the regression for areas with at least 15 firms (columns (3) 
and (4)) and standard errors clustered at the postcode level (columns (5) and (6)). Panel C shows the robustness 
tests for High Emissions. In columns (1) and (2), we use NO2 as the dependent variable. In columns (3) and (4), 
we use our dependent NO2 variable to perform the split into dirty and clean. In columns (5) and (6) we use 
standard errors clustered at the postcode level. Panel D shows the robustness tests for Intangibles. In columns (1) 
and (2), we again use NO2 as our dependent variable. In columns (3) and (4) we require again 15 firms per area. 
In columns (5) and (6) we use standard errors clustered at the postcode level. Panel E shows the robustness tests 
for Firm Size. Again, we use NO2 (columns (1) and (2)), estimating the regression for areas with at least 15 firms 
(columns (3) and (4)) and standard errors clustered at the postcode level (columns (5) and (6)). All regressions 
use area and year fixed effects as well as lagged controls. We report robust standard errors clustered at the area id 
level in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 

Panel A: Robustness Checks Industrial Activity (# Firms) 
 Dependent variable Model specification 
 NO2 # Firms >15 SE Cluster 
 Small Large Small Large Small Large 
 (1) (2) (3) (4) (5) (6) 
Treatment × Post 0.0703 

(0.3697) 
-1.0270*** 

(0.3465) 
0.0060 

(0.0092) 
-0.0235*** 

(0.0088) 
-0.0000 
(0.0097) 

-0.0250*** 
(0.0089) 

Difference 
[t-stat] 

-1.0973** 
[-2.22] 

-0.0296** 
[-2.41] 

-0.0249** 
[-1.97] 

Controls Yes Yes Yes 
Area FE Yes Yes Yes 
Year FE Yes Yes Yes 
Observations 15,374 11,005 15,374 
Adj.-R² 0.9461 0.9493 0.9528 

Panel B: Robustness Checks Industrial Activity (Population) 
 Dependent variable Model specification 
 NO2 # Firms >15 SE Cluster 
 Rural City Rural City Rural City 
 (1) (2) (1) (2) (1) (2) 
       
Treatment × Post -0.3571 

(0.2636) 
-1.9592*** 

(0.6485) 
-0.0085 
(0.0071) 

-0.0458*** 
(0.0131) 

-0.0096  
(0.0110) 

-0.0484*** 
(0.0150) 

Difference 
[t-stat] 

-1.6021** 
[-2.32] 

-0.0374**  
[-2.53] 

-0.0388***  
[-2.93] 

Controls Yes Yes Yes 
Area FE Yes Yes Yes 
Year FE Yes Yes Yes 
Group Size FE Yes Yes No 
Observations 15,393 11,018 15,393 
Adj.-R² 0.9456 0.9490 0.9526 
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Panel C: Robustness Checks Industrial Activity (Emissions) 
 Dependent variable Model specification 
 NO2 Dummy Split SE Cluster 
 Clean Dirty Clean Dirty Clean Dirty 
 (1) (2) (3) (4) (5) (6) 
       
Treatment × Post -0.5485** 

(0.2291) 
-0.3458 
(0.4181) 

-0.0098*** 
(0.0055) 

-0.0143 
(0.0133) 

-0.0126* 
(0.0076) 

-0.0098 
(0.0093) 

Difference 
[t-stat] 

0.2027 
[0.45] 

-0.0045 
[-0.23] 

0.0028 
[0.24 ] 

Controls Yes Yes Yes 
Area FE Yes Yes Yes 
Year FE Yes Yes Yes 
Group Size FE Yes Yes No 
Observations 15,374 15,374 15,374 
Adj.-R² 0.9505 0.9563 0.9566 

Panel D: Robustness Checks Firm Characteristics (Intangible Assets) 
 Dependent variable Model specification 
 NO2 # Firms >15 SE Cluster 
 Low High Low High Low High 
 (1) (2) (1) (2) (1) (2) 
       
Treatment × Post -0.0749 

(0.3473) 
-0.9455*** 

(0.3650) 
0.0026 

(0.0081) 
-0.0249* 
(0.0098) 

-0.0040 
(0.0090) 

-0.0220** 
(0.0095) 

Difference 
[t-stat] 

-0.8705*  
[-1.77] 

-0.0275**  
[-2.24] 

-0.0180**  
[-1.43] 

Controls Yes Yes Yes 
Area FE Yes Yes Yes 
Year FE Yes Yes Yes 
Observations 15,374 11,005 15,374 
Adj.-R² 0.9459 0.9493 0.9528 

Panel E: Robustness Checks Firm Characteristics (Firm Size) 
 Dependent variable Model specification 
 NO2 # Firms >15 SE Cluster 
 Low High Low High Low High 
 (1) (2) (1) (2) (1) (2) 
       
Treatment × Post 0.2537 

(0.4279) 
-1.0218*** 

(0.3893) 
0.0062 

(0.0114) 
-0.0219** 
(0.0101) 

0.0033 
(0.0092) 

-0.0225** 
(0.0102) 

Difference 
[t-stat] 

-1.2755**  
[-2.27] 

-0.0280*  
[-1.93] 

-0.0208 
[-1.60] 

Controls Yes Yes Yes 
Area FE Yes Yes Yes 
Year FE Yes Yes Yes 
Observations 15,377 11,008 15,377 
Adj.-R² 0.9450 0.9479 0.9523 
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